Advertisement

Journal of High Energy Physics

, 2018:132 | Cite as

Spinorial flux tubes in SO(N) gauge theories in 2+1 dimensions

  • Michael TeperEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

We investigate whether one can observe in SO(3) and SO(4) (lattice) gauge theories the presence of spinorial flux tubes, i.e. ones that correspond to the fundamental representation of SU(2); and similarly for SO(6) and SU(4). We do so by calculating the finite volume dependence of the Jp = 2+ glueball in 2 + 1 dimensions, using lattice simulations. We show how this provides strong evidence that these SO(N) gauge theories contain states that are composed of (conjugate) pairs of winding spinorial flux tubes, i.e. ones that are in the (anti)fundamental of the corresponding SU(N) gauge theories. Moreover, these two flux tubes can be arbitrarily far apart. This is so despite the fact that the fields that are available in the SO(N) lattice field theories do not appear to allow us to construct operators that project onto single spinorial flux tubes.

Keywords

Gauge Symmetry Lattice Quantum Field Theory Wilson, ’t Hooft and Polyakov loops 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    R. Lau and M. Teper, SO(N) gauge theories in 2 + 1 dimensions: glueball spectra and confinement, JHEP 10 (2017) 022 [arXiv:1701.06941].
  2. [2]
    M. Teper, SO(4), SO(3) and SU(2) gauge theories in 2+1 dimensions: comparing glueball spectra and string tensions, arXiv:1801.05693 [INSPIRE].
  3. [3]
    R. Lau and M. Teper, The deconfining phase transition of SO(N) gauge theories in 2 + 1 dimensions, JHEP 03 (2016) 072 [arXiv:1510.07841] [INSPIRE].
  4. [4]
    A. Athenodorou and M. Teper, SU(N) gauge theories in 2 + 1 dimensions: glueball spectra and k-string tensions, JHEP 02 (2017) 015 [arXiv:1609.03873] [INSPIRE].
  5. [5]
    M. Teper, Pfaffian particles and strings in SO(2N) gauge theories, arXiv:1810.04546 [INSPIRE].
  6. [6]
    H.B. Meyer and M.J. Teper, High spin glueballs from the lattice, Nucl. Phys. B 658 (2003) 113 [hep-lat/0212026] [INSPIRE].
  7. [7]
    C. Michael, Glueball and toron masses from lattice gauge theory, J. Phys. G 13 (1987) 1001 [INSPIRE].
  8. [8]
    C. Michael, G.A. Tickle and M.J. Teper, The SU(2) glueball spectrum in a small volume, Phys. Lett. B 207 (1988) 313 [INSPIRE].
  9. [9]
    H.B. Meyer, The spectrum of SU(N ) gauge theories in finite volume, JHEP 03 (2005) 064 [hep-lat/0412021] [INSPIRE].
  10. [10]
    G. ’t Hooft, A planar diagram theory for strong interactions, Nucl. Phys. B 72 (1974) 461 [INSPIRE].
  11. [11]
    C. Lovelace, Universality at large N , Nucl. Phys. B 201 (1982) 333 [INSPIRE].
  12. [12]
    S. Coleman, 1/N , in Aspects of symmetry, S. Coleman ed., Cambridge University Press, Cambridge U.K. (1985).Google Scholar
  13. [13]
    A.V. Manohar, Large N QCD, in the proceedings of Probing the standard model of particle interactions. Summer School in Theoretical Physics, 68th session, July 28-September 5, Les Houches, France (1997), hep-ph/9802419 [INSPIRE].
  14. [14]
    A. Athenodorou and M. Teper, Closed flux tubes in D = 2 + 1 SU(N) gauge theories: dynamics and effective string description, JHEP 10 (2016) 093 [arXiv:1602.07634] [INSPIRE].
  15. [15]
    O. Aharony and Z. Komargodski, The effective theory of long strings, JHEP 05 (2013) 118 [arXiv:1302.6257] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    S. Dubovsky, R. Flauger and V. Gorbenko, Flux tube spectra from approximate integrability at low energies, J. Exp. Theor. Phys. 120 (2015) 399 [arXiv:1404.0037] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    S. Dubovsky, R. Flauger and V. Gorbenko, Evidence from lattice data for a new particle on the worldsheet of the QCD flux tube, Phys. Rev. Lett. 111 (2013) 062006 [arXiv:1301.2325] [INSPIRE].
  18. [18]
    S. Dubovsky and V. Gorbenko, Towards a theory of the QCD string, JHEP 02 (2016) 022 [arXiv:1511.01908] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Rudolf Peierls Centre for Theoretical PhysicsUniversity of OxfordOxfordU.K.
  2. 2.All Souls CollegeUniversity of OxfordOxfordU.K.

Personalised recommendations