Advertisement

Journal of High Energy Physics

, 2018:126 | Cite as

Monopole bubbling via string theory

  • T. Daniel BrennanEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

In this paper, we propose a string theory description of generic ’t Hooft defects in \( \mathcal{N}=2 \) SU(N) supersymmetric gauge theories. We show that the space of supesrsymmetric ground states is given by the moduli space of singular monopoles and that in this setting, Kronheimer’s correspondence is realized as T-duality. We conjecture that this brane configuration can be used to study the full dynamics of monopole bubbling.

Keywords

Brane Dynamics in Gauge Theories D-branes Solitons Monopoles and Instantons 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville Correlation Functions from Four-dimensional Gauge Theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    L.F. Alday, D. Gaiotto, S. Gukov, Y. Tachikawa and H. Verlinde, Loop and surface operators in N = 2 gauge theory and Liouville modular geometry, JHEP 01 (2010) 113 [arXiv:0909.0945] [INSPIRE].
  3. [3]
    M.F. Atiyah, N.J. Hitchin, V.G. Drinfeld and Y.I. Manin, Construction of Instantons, Phys. Lett. A 65 (1978) 185 [INSPIRE].
  4. [4]
    C.D.A. Blair and S.A. Cherkis, Singular Monopoles from Cheshire Bows, Nucl. Phys. B 845 (2011) 140 [arXiv:1010.0740] [INSPIRE].
  5. [5]
    T.D. Brennan and G.W. Moore, A note on the semiclassical formulation of BPS states in four-dimensional N = 2 theories, Prog. Theor. Exp. Phys. 2016 (2016) 12C110 [arXiv:1610.00697] [INSPIRE].
  6. [6]
    T.D. Brennan, A. Dey and G.W. Moore, On ’t Hooft defects, monopole bubbling and supersymmetric quantum mechanics, JHEP 09 (2018) 014 [arXiv:1801.01986] [INSPIRE].
  7. [7]
    T.D. Brennan, A. Dey and G.W. Moore, BPS Indicies as Characteristic Classes on Monopole Moduli Spaces, in preparation.Google Scholar
  8. [8]
    T.D. Brennan, A. Dey and G.W. Moore, ’t Hooft Defects and Wall Crossing in SQM, in preparation.Google Scholar
  9. [9]
    T.D. Brennan, G.W. Moore and A.B. Royston, Wall Crossing from Dirac Zeromodes, JHEP 09 (2018) 038 [arXiv:1805.08783] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  10. [10]
    L. Brink, J.H. Schwarz and J. Scherk, Supersymmetric Yang-Mills Theories, Nucl. Phys. B 121 (1977) 77 [INSPIRE].
  11. [11]
    G. Chalmers and A. Hanany, Three-dimensional gauge theories and monopoles, Nucl. Phys. B 489 (1997) 223 [hep-th/9608105] [INSPIRE].
  12. [12]
    S.A. Cherkis and A. Kapustin, Singular monopoles and supersymmetric gauge theories in three-dimensions, Nucl. Phys. B 525 (1998) 215 [hep-th/9711145] [INSPIRE].
  13. [13]
    S.A. Cherkis, Moduli Spaces of Instantons on the Taub-NUT Space, Commun. Math. Phys. 290 (2009) 719 [arXiv:0805.1245] [INSPIRE].
  14. [14]
    S.A. Cherkis, Instantons on the Taub-NUT Space, Adv. Theor. Math. Phys. 14 (2010) 609 [arXiv:0902.4724] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    S.A. Cherkis, Instantons on Gravitons, Commun. Math. Phys. 306 (2011) 449 [arXiv:1007.0044] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    S.A. Cherkis and B. Durcan, The ’t Hooft-Polyakov monopole in the presence of an ’t Hooft operator, Phys. Lett. B 671 (2009) 123 [arXiv:0711.2318] [INSPIRE].
  17. [17]
    S.A. Cherkis, C. O’Hara and C. S¨amann, Super Yang-Mills Theory with Impurity Walls and Instanton Moduli Spaces, Phys. Rev. D 83 (2011) 126009 [arXiv:1103.0042] [INSPIRE].
  18. [18]
    S.A. Cherkis, A. Larrain-Hubach and M. Stern, Instantons on multi-Taub-NUT Spaces I: Asymptotic Form and Index Theorem, arXiv:1608.00018 [INSPIRE].
  19. [19]
    F. Denef, Quantum quivers and Hall/hole halos, JHEP 10 (2002) 023 [hep-th/0206072] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    D.-E. Diaconescu, D-branes, monopoles and Nahm equations, Nucl. Phys. B 503 (1997) 220 [hep-th/9608163] [INSPIRE].
  21. [21]
    M.R. Douglas, Branes within branes, in proceedings of the NATO Advanced Study Institute on Strings, Branes and Dualities Cargèse, France, 26 May–14 June 1997, pp. 267–275 [hep-th/9512077] [INSPIRE].
  22. [22]
    P. Forgacs and N.S. Manton, Space-Time Symmetries in Gauge Theories, Commun. Math. Phys. 72 (1980) 15 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing, Hitchin Systems and the WKB Approximation, arXiv:0907.3987 [INSPIRE].
  24. [24]
    D. Gaiotto, G.W. Moore and A. Neitzke, Framed BPS States, Adv. Theor. Math. Phys. 17 (2013) 241 [arXiv:1006.0146] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    D. Gaiotto, G.W. Moore and A. Neitzke, Spectral networks, Ann. Henri Poincaré 14 (2013) 1643 [arXiv:1204.4824] [INSPIRE].
  26. [26]
    D. Gaiotto, G.W. Moore and A. Neitzke, Spectral Networks and Snakes, Ann. Henri Poincaré 15 (2014) 61 [arXiv:1209.0866] [INSPIRE].
  27. [27]
    P. Goddard, J. Nuyts and D.I. Olive, Gauge Theories and Magnetic Charge, Nucl. Phys. B 125 (1977) 1 [INSPIRE].
  28. [28]
    R. Gregory, J.A. Harvey and G.W. Moore, Unwinding strings and t duality of Kaluza-Klein and h monopoles, Adv. Theor. Math. Phys. 1 (1997) 283 [hep-th/9708086] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [INSPIRE].
  30. [30]
    J.P. Harnad, L. Vinet and S. Shnider, Group Actions on Principal Bundles and Invariance Conditions for Gauge Fields, J. Math. Phys. 21 (1980) 2719 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    Y. Ito, T. Okuda and M. Taki, Line operators on S 1 × ℝ3 and quantization of the Hitchin moduli space, JHEP 04 (2012) 010 [Erratum JHEP 03 (2016) 085] [arXiv:1111.4221] [INSPIRE].
  32. [32]
    A. Kapustin, Wilson-’t Hooft operators in four-dimensional gauge theories and S-duality, Phys. Rev. D 74 (2006) 025005 [hep-th/0501015] [INSPIRE].
  33. [33]
    A. Kapustin and E. Witten, Electric-Magnetic Duality And The Geometric Langlands Program, Commun. Num. Theor. Phys. 1 (2007) 1 [hep-th/0604151] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    L. Kofman, A.D. Linde, X. Liu, A. Maloney, L. McAllister and E. Silverstein, Beauty is attractive: Moduli trapping at enhanced symmetry points, JHEP 05 (2004) 030 [hep-th/0403001] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    P.B. Kronheimer, Monopoles and Taub-NUT Metrics, M.Sc. Thesis, Oxford U.K. (1985).Google Scholar
  36. [36]
    N.S. Manton and B.J. Schroers, Bundles over moduli spaces and the quantization of BPS monopoles, Annals Phys. 225 (1993) 290 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  37. [37]
    G.W. Moore, A.B. Royston and D. Van den Bleeken, Brane bending and monopole moduli, JHEP 10 (2014) 157 [arXiv:1404.7158] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    G.W. Moore, A.B. Royston and D. Van den Bleeken, Parameter counting for singular monopoles on3, JHEP 10 (2014) 142 [arXiv:1404.5616] [INSPIRE].
  39. [39]
    G.W. Moore, A.B. Royston and D. Van den Bleeken, Semiclassical framed BPS states, JHEP 07 (2016) 071 [arXiv:1512.08924] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    G.W. Moore, A.B. Royston and D. Van den Bleeken, L 2 -Kernels Of Dirac-Type Operators On Monopole Moduli Spaces, in proceedings of the String-Math 2015, Sanya, China, 31 December 2015–4 January 2016, pp. 169–182 [Proc. Symp. Pure Math. 96 (2015) 169] [arXiv:1512.08923] [INSPIRE].
  41. [41]
    W. Nahm, A Simple Formalism for the BPS Monopole, Phys. Lett. B 90 (1980) 413 [INSPIRE].
  42. [42]
    H. Nakajima and Y. Takayama, Cherkis bow varieties and Coulomb branches of quiver gauge theories of affine type A, arXiv:1606.02002 [INSPIRE].
  43. [43]
    H. Ooguri and C. Vafa, Two-dimensional black hole and singularities of CY manifolds, Nucl. Phys. B 463 (1996) 55 [hep-th/9511164] [INSPIRE].
  44. [44]
    N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099] [INSPIRE].
  45. [45]
    G. ’t Hooft, On the Phase Transition Towards Permanent Quark Confinement, Nucl. Phys. B 138 (1978) 1 [INSPIRE].
  46. [46]
    D. Tong, The holographic dual of AdS 3 × S 3 × S 3 × S 1, JHEP 04 (2014) 193 [arXiv:1402.5135] [INSPIRE].
  47. [47]
    K.K. Uhlenbeck, Removable Singularities In Yang-Mills Fields, Commun. Math. Phys. 83 (1982) 11 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    E.J. Weinberg and P. Yi, Magnetic Monopole Dynamics, Supersymmetry and Duality, Phys. Rept. 438 (2007) 65 [hep-th/0609055] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    E. Witten, Solutions of four-dimensional field theories via M-theory, Nucl. Phys. B 500 (1997) 3 [hep-th/9703166] [INSPIRE].
  50. [50]
    E. Witten, Branes, Instantons, And Taub-NUT Spaces, JHEP 06 (2009) 067 [arXiv:0902.0948] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.NHETC and Department of Physics and AstronomyRutgers UniversityPiscatawayU.S.A.

Personalised recommendations