Advertisement

Journal of High Energy Physics

, 2018:69 | Cite as

All five-loop planar four-point functions of half-BPS operators in \( \mathcal{N}=4 \) SYM

  • Dmitry Chicherin
  • Alessandro Georgoudis
  • Vasco Gonçalves
  • Raul Pereira
Open Access
Regular Article - Theoretical Physics
  • 23 Downloads

Abstract

We obtain all planar four-point correlators of half-BPS operators in \( \mathcal{N}=4 \) SYM up to five loops. The ansatz for the integrand is fixed partially by imposing lightcone OPE relations between different correlators. We then fix the integrated correlators by comparing their asymptotic expansions with simple data obtained from integrability. We extract OPE coefficients and find a prediction for the triple wrapping correction of the hexagon form factors, which contributes already at the five-loop order.

Keywords

Conformal Field Theory Integrable Field Theories Supersymmetric Gauge Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    L.F. Alday and A. Bissi, Higher-spin correlators, JHEP 10 (2013) 202 [arXiv:1305.4604] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    J. Maldacena, D. Simmons-Duffin and A. Zhiboedov, Looking for a bulk point, JHEP 01 (2017) 013 [arXiv:1509.03612] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    M.S. Costa, V. Goncalves and J. Penedones, Conformal Regge theory, JHEP 12 (2012) 091 [arXiv:1209.4355] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    N. Gromov, V. Kazakov, S. Leurent and D. Volin, Quantum spectral curve for planar N = 4 super-Yang-Mills theory, Phys. Rev. Lett. 112 (2014) 011602 [arXiv:1305.1939] [INSPIRE].
  5. [5]
    N. Gromov, V. Kazakov, S. Leurent and D. Volin, Quantum spectral curve for arbitrary state/operator in AdS 5 /CFT 4, JHEP 09 (2015) 187 [arXiv:1405.4857] [INSPIRE].
  6. [6]
    N. Gromov, F. Levkovich-Maslyuk and G. Sizov, Quantum spectral curve and the numerical solution of the spectral problem in AdS 5 /CFT 4, JHEP 06 (2016) 036 [arXiv:1504.06640] [INSPIRE].
  7. [7]
    B. Basso, S. Komatsu and P. Vieira, Structure constants and integrable bootstrap in planar N =4 SYM theory,arXiv:1505.06745[INSPIRE].
  8. [8]
    T. Fleury and S. Komatsu, Hexagonalization of correlation functions, JHEP 01 (2017) 130 [arXiv:1611.05577] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    T. Fleury and S. Komatsu, Hexagonalization of correlation functions II: two-particle contributions, JHEP 02 (2018) 177 [arXiv:1711.05327] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    B. Eden and A. Sfondrini, Tessellating cushions: four-point functions in N = 4 SYM, JHEP 10 (2017) 098 [arXiv:1611.05436] [INSPIRE].
  11. [11]
    B. Eden, Y. Jiang, D. le Plat and A. Sfondrini, Colour-dressed hexagon tessellations for correlation functions and non-planar corrections, JHEP 02 (2018) 170 [arXiv:1710.10212] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    T. Bargheer, J. Caetano, T. Fleury, S. Komatsu and P. Vieira, Handling handles I: nonplanar integrability, arXiv:1711.05326 [INSPIRE].
  13. [13]
    B. Eden and A. Sfondrini, Three-point functions in N = 4 SYM: the hexagon proposal at three loops, JHEP 02 (2016) 165 [arXiv:1510.01242] [INSPIRE].
  14. [14]
    B. Basso, V. Goncalves, S. Komatsu and P. Vieira, Gluing hexagons at three loops, Nucl. Phys. B 907 (2016) 695 [arXiv:1510.01683] [INSPIRE].
  15. [15]
    B. Basso, V. Goncalves and S. Komatsu, Structure constants at wrapping order, JHEP 05 (2017) 124 [arXiv:1702.02154] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    V. Gonçalves, Extracting OPE coefficient of Konishi at four loops, JHEP 03 (2017) 079 [arXiv:1607.02195] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    B. Eden and F. Paul, Half-BPS half-BPS twist two at four loops in N = 4 SYM, arXiv:1608.04222 [INSPIRE].
  18. [18]
    B. Eden, Three-loop universal structure constants in N = 4 SUSY Yang-Mills theory, arXiv:1207.3112 [INSPIRE].
  19. [19]
    J. Caetano and T. Fleury, Fermionic correlators from integrability, JHEP 09 (2016) 010 [arXiv:1607.02542] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    B. Eden, C. Schubert and E. Sokatchev, Three loop four point correlator in N = 4 SYM, Phys. Lett. B 482 (2000) 309 [hep-th/0003096] [INSPIRE].
  21. [21]
    G. Arutyunov and S. Frolov, Four point functions of lowest weight CPOs in N = 4 SYM 4 in supergravity approximation, Phys. Rev. D 62 (2000) 064016 [hep-th/0002170] [INSPIRE].
  22. [22]
    G. Arutyunov, F.A. Dolan, H. Osborn and E. Sokatchev, Correlation functions and massive Kaluza-Klein modes in the AdS/CFT correspondence, Nucl. Phys. B 665 (2003) 273 [hep-th/0212116] [INSPIRE].
  23. [23]
    G. Arutyunov, R. Klabbers and S. Savin, Four-point functions of 1/2-BPS operators of any weights in the supergravity approximation, JHEP 09 (2018) 118 [arXiv:1808.06788] [INSPIRE].
  24. [24]
    B. Eden, P. Heslop, G.P. Korchemsky and E. Sokatchev, Hidden symmetry of four-point correlation functions and amplitudes in N = 4 SYM, Nucl. Phys. B 862 (2012) 193 [arXiv:1108.3557] [INSPIRE].
  25. [25]
    J.L. Bourjaily, P. Heslop and V.-V. Tran, Amplitudes and correlators to ten loops using simple, graphical bootstraps, JHEP 11 (2016) 125 [arXiv:1609.00007] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    L. Rastelli and X. Zhou, Mellin amplitudes for AdS 5 × S 5, Phys. Rev. Lett. 118 (2017) 091602 [arXiv:1608.06624] [INSPIRE].
  27. [27]
    L. Rastelli and X. Zhou, How to succeed at holographic correlators without really trying, JHEP 04 (2018) 014 [arXiv:1710.05923] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    L. Rastelli and X. Zhou, Holographic four-point functions in the (2, 0) theory, JHEP 06 (2018) 087 [arXiv:1712.02788] [INSPIRE].
  29. [29]
    L.F. Alday and A. Bissi, Loop corrections to supergravity on AdS 5 × S 5, Phys. Rev. Lett. 119 (2017) 171601 [arXiv:1706.02388] [INSPIRE].
  30. [30]
    F. Aprile, J.M. Drummond, P. Heslop and H. Paul, Unmixing supergravity, JHEP 02 (2018) 133 [arXiv:1706.08456] [INSPIRE].
  31. [31]
    F. Aprile, J.M. Drummond, P. Heslop and H. Paul, Loop corrections for Kaluza-Klein AdS amplitudes, JHEP 05 (2018) 056 [arXiv:1711.03903] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    V. Gonçalves, Four point function of N = 4 stress-tensor multiplet at strong coupling, JHEP 04 (2015) 150 [arXiv:1411.1675] [INSPIRE].
  33. [33]
    B. Eden, A.C. Petkou, C. Schubert and E. Sokatchev, Partial nonrenormalization of the stress tensor four point function in N = 4 SYM and AdS/CFT, Nucl. Phys. B 607 (2001) 191 [hep-th/0009106] [INSPIRE].
  34. [34]
    P.J. Heslop and P.S. Howe, Four point functions in N = 4 SYM, JHEP 01 (2003) 043 [hep-th/0211252] [INSPIRE].
  35. [35]
    M. Nirschl and H. Osborn, Superconformal Ward identities and their solution, Nucl. Phys. B 711 (2005) 409 [hep-th/0407060] [INSPIRE].
  36. [36]
    J.M. Drummond, J. Henn, V.A. Smirnov and E. Sokatchev, Magic identities for conformal four-point integrals, JHEP 01 (2007) 064 [hep-th/0607160] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    B. Eden, P. Heslop, G.P. Korchemsky and E. Sokatchev, Constructing the correlation function of four stress-tensor multiplets and the four-particle amplitude in N = 4 SYM, Nucl. Phys. B 862 (2012) 450 [arXiv:1201.5329] [INSPIRE].
  38. [38]
    R.G. Ambrosio, B. Eden, T. Goddard, P. Heslop and C. Taylor, Local integrands for the five-point amplitude in planar N = 4 SYM up to five loops, JHEP 01 (2015) 116 [arXiv:1312.1163] [INSPIRE].
  39. [39]
    J.L. Bourjaily, P. Heslop and V.-V. Tran, Perturbation theory at eight loops: novel structures and the breakdown of manifest conformality in N = 4 supersymmetric Yang-Mills theory, Phys. Rev. Lett. 116 (2016) 191602 [arXiv:1512.07912] [INSPIRE].
  40. [40]
    D. Chicherin, J. Drummond, P. Heslop and E. Sokatchev, All three-loop four-point correlators of half-BPS operators in planar N = 4 SYM, JHEP 08 (2016) 053 [arXiv:1512.02926] [INSPIRE].
  41. [41]
    F.A. Dolan and H. Osborn, Conformal four point functions and the operator product expansion, Nucl. Phys. B 599 (2001) 459 [hep-th/0011040] [INSPIRE].
  42. [42]
    P. Vieira and T. Wang, Tailoring non-compact spin chains, JHEP 10 (2014) 035 [arXiv:1311.6404] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    F. Coronado, Perturbative four-point functions in planar N = 4 SYM from hexagonalization, arXiv:1811.00467 [INSPIRE].
  44. [44]
    B. Eden, Y. Jiang, M. de Leeuw, T. Meier, D. le Plat and A. Sfondrini, Positivity of hexagon perturbation theory, arXiv:1806.06051 [INSPIRE].
  45. [45]
    B. Basso and L.J. Dixon, Gluing ladder Feynman diagrams into fishnets, Phys. Rev. Lett. 119 (2017) 071601 [arXiv:1705.03545] [INSPIRE].
  46. [46]
    B. Eden and V.A. Smirnov, Evaluating four-loop conformal Feynman integrals by D-dimensional differential equations, JHEP 10 (2016) 115 [arXiv:1607.06427] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    M. Golz, E. Panzer and O. Schnetz, Graphical functions in parametric space, Lett. Math. Phys. 107 (2017) 1177 [arXiv:1509.07296] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    M. Beneke and V.A. Smirnov, Asymptotic expansion of Feynman integrals near threshold, Nucl. Phys. B 522 (1998) 321 [hep-ph/9711391] [INSPIRE].
  49. [49]
    A. Georgoudis, V. Goncalves and R. Pereira, Konishi OPE coefficient at the five loop order, arXiv:1710.06419 [INSPIRE].
  50. [50]
    A.V. Smirnov, FIRE5: a C++ implementation of Feynman Integral REduction, Comput. Phys. Commun. 189 (2015) 182 [arXiv:1408.2372] [INSPIRE].
  51. [51]
    A. Georgoudis, V. Goncalves, E. Panzer and R. Pereira, Five-loop massless propagator integrals, arXiv:1802.00803 [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.PRISMA Cluster of ExcellenceJohannes Gutenberg UniversityMainzGermany
  2. 2.Department of Physics and AstronomyUppsala UniversityUppsalaSweden
  3. 3.ICTP South American Institute for Fundamental Research, IFT-UNESPSão PauloBrazil
  4. 4.School of Mathematics and Hamilton Mathematics Institute, Trinity College DublinDublin 2Ireland

Personalised recommendations