Journal of High Energy Physics

, 2018:64 | Cite as

Supersymmetry breaking phase in three dimensional large N gauge theories

  • Kazuma ShimizuEmail author
  • Seiji Terashima
Open Access
Regular Article - Theoretical Physics


Three dimensional supersymmetric gauge theories are often in a gapped phase, in which SUSY is spontaneously broken, if all the matter fields are massive and decoupled in the low energy. We study this phase in the large N limit using the localization technique for the theory on the ellipsoid, which interpolates the round three sphere and the flat space compactified on S1. We find a large N saddle point solution for the gauge theory with some massive matter fields. This solution gives a vanishing (generalized) Polyakov loop in the flat space limit, thus, it corresponds to the confining phase at the leading order in the 1/N expansion.


Supersymmetric Gauge Theory Spontaneous Symmetry Breaking Confinement 1/N Expansion 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    E. Witten, Topological quantum field theory, Commun. Math. Phys. 117 (1988) 353 [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2003) 831 [hep-th/0206161] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    A. Kapustin, B. Willett and I. Yaakov, Exact results for Wilson loops in superconformal Chern-Simons theories with matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    D.L. Jafferis, The exact superconformal R-symmetry extremizes Z, JHEP 05 (2012) 159 [arXiv:1012.3210] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    N. Hama, K. Hosomichi and S. Lee, Notes on SUSY gauge theories on three-sphere, JHEP 03 (2011) 127 [arXiv:1012.3512] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    K. Intriligator and N. Seiberg, Aspects of 3d N = 2 Chern-Simons-matter theories, JHEP 07 (2013) 079 [arXiv:1305.1633] [INSPIRE].
  8. [8]
    E. Witten, Supersymmetric index of three-dimensional gauge theory, in The many faces of the superworld, M.A. Shifman ed., World Scientific, Singapore, (2000), pg. 156 [hep-th/9903005] [INSPIRE].
  9. [9]
    K. Ohta, Supersymmetric index and s rule for type IIB branes, JHEP 10 (1999) 006 [hep-th/9908120] [INSPIRE].
  10. [10]
    T. Nosaka, K. Shimizu and S. Terashima, Mass deformed ABJM theory on three sphere in large N limit, JHEP 03 (2017) 121 [arXiv:1608.02654] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    M. Honda, T. Nosaka, K. Shimizu and S. Terashima, Supersymmetry breaking in a large N gauge theory with gravity dual, arXiv:1807.08874 [INSPIRE].
  12. [12]
    T. Nosaka, K. Shimizu and S. Terashima, Large N behavior of mass deformed ABJM theory, JHEP 03 (2016) 063 [arXiv:1512.00249] [INSPIRE].CrossRefzbMATHGoogle Scholar
  13. [13]
    N. Hama, K. Hosomichi and S. Lee, SUSY gauge theories on squashed three-spheres, JHEP 05 (2011) 014 [arXiv:1102.4716] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    A. Kapustin, B. Willett and I. Yaakov, Nonperturbative tests of three-dimensional dualities, JHEP 10 (2010) 013 [arXiv:1003.5694] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    K. Hosomichi, A review on SUSY gauge theories on S 3, in New dualities of supersymmetric gauge theories, Springer, Cham, Switzerland, (2015), pg. 307 [arXiv:1412.7128] [INSPIRE].
  16. [16]
    A.G. Bytsko and J. Teschner, Quantization of models with non-compact quantum group symmetry: modular XXZ magnet and lattice sinh-Gordon model, J. Phys. A 39 (2006) 12927 [hep-th/0602093] [INSPIRE].
  17. [17]
    Y. Hatsuda, ABJM on ellipsoid and topological strings, JHEP 07 (2016) 026 [arXiv:1601.02728] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    C. Closset, H. Kim and B. Willett, Supersymmetric partition functions and the three-dimensional A-twist, JHEP 03 (2017) 074 [arXiv:1701.03171] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    C. Closset, H. Kim and B. Willett, Seifert fibering operators in 3d N = 2 theories, arXiv:1807.02328 [INSPIRE].
  20. [20]
    I. Affleck, J.A. Harvey and E. Witten, Instantons and (super)symmetry breaking in (2 + 1)-dimensions, Nucl. Phys. B 206 (1982) 413 [INSPIRE].
  21. [21]
    T. Morita and V. Niarchos, F-theorem, duality and SUSY breaking in one-adjoint Chern-Simons-matter theories, Nucl. Phys. B 858 (2012) 84 [arXiv:1108.4963] [INSPIRE].
  22. [22]
    T. Suyama, Supersymmetry breaking and planar free energy in Chern-Simons-matter theories, arXiv:1405.7469 [INSPIRE].
  23. [23]
    K. Hosomichi, K.-M. Lee, S. Lee, S. Lee and J. Park, N = 5, 6 superconformal Chern-Simons theories and M 2-branes on orbifolds, JHEP 09 (2008) 002 [arXiv:0806.4977] [INSPIRE].
  24. [24]
    J. Gomis, D. Rodriguez-Gomez, M. Van Raamsdonk and H. Verlinde, A massive study of M 2-brane proposals, JHEP 09 (2008) 113 [arXiv:0807.1074] [INSPIRE].
  25. [25]
    R.C. Myers, Dielectric branes, JHEP 12 (1999) 022 [hep-th/9910053] [INSPIRE].
  26. [26]
    Y. Imamura and D. Yokoyama, N = 2 supersymmetric theories on squashed three-sphere, Phys. Rev. D 85 (2012) 025015 [arXiv:1109.4734] [INSPIRE].
  27. [27]
    C. Toldo and B. Willett, Partition functions on 3d circle bundles and their gravity duals, JHEP 05 (2018) 116 [arXiv:1712.08861] [INSPIRE].
  28. [28]
    D. Gang and N. Kim, Large N twisted partition functions in 3d-3d correspondence and holography, arXiv:1808.02797 [INSPIRE].
  29. [29]
    D. Gaiotto and E. Witten, Supersymmetric boundary conditions in N = 4 super Yang-Mills theory, J. Statist. Phys. 135 (2009) 789 [arXiv:0804.2902] [INSPIRE].
  30. [30]
    C. Closset, T.T. Dumitrescu, G. Festuccia, Z. Komargodski and N. Seiberg, Contact terms, unitarity and F-maximization in three-dimensional superconformal theories, JHEP 10 (2012) 053 [arXiv:1205.4142] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    C. Closset, T.T. Dumitrescu, G. Festuccia, Z. Komargodski and N. Seiberg, Comments on Chern-Simons contact terms in three dimensions, JHEP 09 (2012) 091 [arXiv:1206.5218] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Yukawa Institute for Theoretical PhysicsKyoto UniversityKyotoJapan

Personalised recommendations