Advertisement

Journal of High Energy Physics

, 2018:49 | Cite as

Some remarks on (super)-conformal Killing-Yano tensors

  • P. S. Howe
  • U. LindströmEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

A Killing-Yano tensor is an antisymmetric tensor obeying a first-order differential constraint similar to that obeyed by a Killing vector. In this article we consider generalisations of such objects, focusing on the conformal case. These generalised conformal Killing-Yano tensors are of mixed symmetry type and obey the constraint that the largest irreducible representation of \( \mathfrak{o} \)(n) contained in the tensor constructed from the first-derivative applied to such an object should vanish. Such tensors appear naturally in the context of spinning particles having N0 = 1 worldline supersymmetry and in the related problem of higher symmetries of Dirac operators. Generalisations corresponding to extended worldline supersymmetries and to spacetime supersymmetry are discussed.

Keywords

Extended Supersymmetry Higher Spin Symmetry 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    K. Yano, Some remarks on tensor fields and curvature, Ann. Math. 55 (1952) 328.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    P. Sommers, On Killing tensors and constants of motion, J. Math. Phys. 14 (1973) 787.ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    S. Tachibana, On conformal Killing tensor in a Riemannian space, Tohoku Math. J. 21 (1969) 56.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    P. Krtous, D. Kubiznak, D.N. Page and V.P. Frolov, Killing-Yano Tensors, Rank-2 Killing Tensors and Conserved Quantities in Higher Dimensions, JHEP 02 (2007) 004 [hep-th/0612029] [INSPIRE].
  5. [5]
    B. Carter, Global structure of the Kerr family of gravitational fields, Phys. Rev. 174 (1968) 1559 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  6. [6]
    R. Penrose, Naked singularities, Annals N. Y. Acad. Sci. 224 (1973) 125 [INSPIRE].
  7. [7]
    G. Papadopoulos, Killing-Yano equations and G-structures, Class. Quant. Grav. 25 (2008) 105016 [arXiv:0712.0542] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    G. Papadopoulos, Killing-Yano Equations with Torsion, Worldline Actions and G-Structures, Class. Quant. Grav. 29 (2012) 115008 [arXiv:1111.6744] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    Y. Chervonyi and O. Lunin, Killing(-Yano) Tensors in String Theory, JHEP 09 (2015) 182 [arXiv:1505.06154] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    M. Cariglia, G.W. Gibbons, J.W. van Holten, P.A. Horvathy, P. Kosinski and P.M. Zhang, Killing tensors and canonical geometry, Class. Quant. Grav. 31 (2014) 125001 [arXiv:1401.8195] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    M. Cariglia, Hidden Symmetries of the Dirac Equation in Curved Space-Time, Springer Proc. Phys. 157 (2014) 25 [arXiv:1209.6406] [INSPIRE].CrossRefzbMATHGoogle Scholar
  12. [12]
    O.P. Santillan, Hidden symmetries and supergravity solutions, J. Math. Phys. 53 (2012) 043509 [arXiv:1108.0149] [INSPIRE].
  13. [13]
    J.W. van Holten and R.H. Rietdijk, Symmetries and motions in manifolds, J. Geom. Phys. 11 (1993) 559 [hep-th/9205074] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    G.W. Gibbons, R.H. Rietdijk and J.W. van Holten, SUSY in the sky, Nucl. Phys. B 404 (1993) 42 [hep-th/9303112] [INSPIRE].
  15. [15]
    M.G. Eastwood, Higher symmetries of the Laplacian, Annals Math. 161 (2005) 1645 [hep-th/0206233] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    J. Kress, Generalised Conformal Killing-Yano Tensors: Applications to Electrodynamics, Doctoral Thesis, University of Newcastle, Department of Mathematics (1997).Google Scholar
  17. [17]
    P.S. Howe and U. Lindström, Notes on Super Killing Tensors, JHEP 03 (2016) 078 [arXiv:1511.04575] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  18. [18]
    W. Nahm, Supersymmetries and their Representations, Nucl. Phys. B 135 (1978) 149 [INSPIRE].
  19. [19]
    M. Scheunert, W. Nahm and V. Rittenberg, Classification of All Simple Graded Lie Algebras Whose Lie Algebra Is Reductive. 1, J. Math. Phys. 17 (1976) 1626 [INSPIRE].
  20. [20]
    M. Scheunert, W. Nahm and V. Rittenberg, Classification of All Simple Graded Lie Algebras Whose Lie Algebra Is Reductive. 2. Construction of the Exceptional Algebras, J. Math. Phys. 17 (1976) 1640 [INSPIRE].
  21. [21]
    V.G. Kac, A Sketch of Lie Superalgebra Theory, Commun. Math. Phys. 53 (1977) 31 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    V.G. Kac, Lie Superalgebras, Adv. Math. 26 (1977) 8 [INSPIRE].
  23. [23]
    M.F. Sohnius, The Conformal Group in Superspace, in Feldafing 1976, proceedings of the Quantum Theory and The Structure Of Time and Space. Volume 2: In Memoriam Werner Heisenberg, Carl Hanser Verlag, Munich Germany (1977), pp. 241-252 [MPI-PAE/PTh 32/76] [INSPIRE].
  24. [24]
    F.A. Berezin and M.S. Marinov, Particle Spin Dynamics as the Grassmann Variant of Classical Mechanics, Annals Phys. 104 (1977) 336 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  25. [25]
    R. Casalbuoni, Relativity and Supersymmetries, Phys. Lett. B 62 (1976) 49 [INSPIRE].
  26. [26]
    A. Barducci, R. Casalbuoni and L. Lusanna, Supersymmetries and the Pseudoclassical Relativistic electron, Nuovo Cim. A 35 (1976) 377 [INSPIRE].
  27. [27]
    L. Brink, S. Deser, B. Zumino, P. Di Vecchia and P.S. Howe, Local Supersymmetry for Spinning Particles, Phys. Lett. B 64 (1976) 435 [Erratum ibid. B 68 (1977) 488] [INSPIRE].
  28. [28]
    L. Brink, P. Di Vecchia and P.S. Howe, A Lagrangian Formulation of the Classical and Quantum Dynamics of Spinning Particles, Nucl. Phys. B 118 (1977) 76 [INSPIRE].
  29. [29]
    V.D. Gershun and V.I. Tkach, Classical And Quantum Dynamics Of Particles With Arbitrary Spin, JETP Lett. 29 (1979) 288 [Pisma Zh. Eksp. Teor. Fiz. 29 (1979) 320] [INSPIRE].
  30. [30]
    P.S. Howe, S. Penati, M. Pernici and P.K. Townsend, Wave Equations for Arbitrary Spin From Quantization of the Extended Supersymmetric Spinning Particle, Phys. Lett. B 215 (1988) 555 [INSPIRE].
  31. [31]
    P.S. Howe, S. Penati, M. Pernici and P.K. Townsend, A Particle Mechanics Description of Antisymmetric Tensor Fields, Class. Quant. Grav. 6 (1989) 1125 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    S.M. Kuzenko and Z.V. Yarevskaya, Conformal invariance, N extended supersymmetry and massless spinning particles in anti-de Sitter space, Mod. Phys. Lett. A 11 (1996) 1653 [hep-th/9512115] [INSPIRE].
  33. [33]
    P.S. Howe and U. Lindström, Super-Laplacians and their symmetries, JHEP 05 (2017) 119 [arXiv:1612.06787] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    I. Bars, B. Morel and H. Ruegg, Kac-Dynkin Diagrams and Supertableaux, J. Math. Phys. 24 (1983) 2253 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    D. Leites, Indecomposable representations of Lie superalgebras, math.RT/0202184v1.
  36. [36]
    P.S. Howe and U. Lindström, in preparation.Google Scholar
  37. [37]
    A.A. Rosly, Super Yang-Mills constraints as integrability conditions, in Group Theoretical Methods in Physics, M.A. Markov ed., Nauka, Moscow Russia (1983), p. 263.Google Scholar
  38. [38]
    A.A. Roslyi and A.S. Schwarz, Supersymmetry in a space with auxiliary dimensions, Commun. Math. Phys. 105 (1986) 645 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    A. Galperin, E. Ivanov, S. Kalitsyn, V. Ogievetsky and E. Sokatchev, Unconstrained N = 2 Matter, Yang-Mills and Supergravity Theories in Harmonic Superspace, Class. Quant. Grav. 1 (1984) 469 [Erratum ibid. 2 (1985) 127] [INSPIRE].
  40. [40]
    A. Galperin, E. Ivanov, S. Kalitsyn, V. Ogievetsky and E. Sokatchev, Unconstrained Off-Shell N = 3 Supersymmetric Yang-Mills Theory,Class. Quant. Grav. 2 (1985) 155 [INSPIRE].
  41. [41]
    A. Karlhede, U. Lindström and M. Roček, Selfinteracting Tensor Multiplets in N = 2 Superspace, Phys. Lett. B 147 (1984) 297 [INSPIRE].
  42. [42]
    J. Grundberg and U. Lindström, Actions for Linear Multiplets in Six-dimensions, Class. Quant. Grav. 2 (1985) L33 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    U. Lindström and M. Roček, Properties of hyperkähler manifolds and their twistor spaces, Commun. Math. Phys. 293 (2010) 257 [arXiv:0807.1366] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  44. [44]
    P.S. Howe and G.G. Hartwell, A Superspace survey, Class. Quant. Grav. 12 (1995) 1823 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    J. Lukierski and A. Nowicki, General Superspaces From Supertwistors, Phys. Lett. B 211 (1988) 276 [INSPIRE].
  46. [46]
    G.G. Hartwell and P.S. Howe, (N, p, q) harmonic superspace, Int. J. Mod. Phys. A 10 (1995) 3901 [hep-th/9412147] [INSPIRE].
  47. [47]
    Y.I. Manin, Gauge Field Theory And Complex Geometry, Grundlehren der mathematischen Wissenschaften, volume 289, Springer, Berlin Germany (1988).Google Scholar
  48. [48]
    J.P. Harnad and S. Shnider, Isotropic Geometry, Twistors And Supertwistors. 1. The Generalized Klein Correspondence And Spinor Flags, J. Math. Phys. 33 (1992) 3197 [INSPIRE].
  49. [49]
    J.P. Harnad and S. Shnider, Isotropic geometry and twistors in higher dimensions. 2: Odd dimensions, reality conditions and twistor superspaces, J. Math. Phys. 36 (1995) 1945 [INSPIRE].
  50. [50]
    R. Penrose and W. Rindler, Spinors And Space-time. Volume 2: Spinor And Twistor Methods In Space-time Geometry, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge U.K. (1988) [ISBN: 9780521347860, 9780511868429] [INSPIRE].
  51. [51]
    R.J. Baston and M.G. Eastwood, The Penrose transform: Its interaction with representation theory, Oxford Mathematical Monographs, Clarendon Press, Oxford U.K. (1989).Google Scholar
  52. [52]
    R.S. Ward and R.O. Wells, Twistor geometry and field theory, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge U.K. (1991) [ISBN: 9780521422680, 9780521422680, 9780511869778] [INSPIRE].
  53. [53]
    P.J. Heslop and P.S. Howe, Aspects of N = 4 SYM, JHEP 01 (2004) 058 [hep-th/0307210] [INSPIRE].
  54. [54]
    W. Siegel, Fields, hep-th/9912205 [INSPIRE].
  55. [55]
    M. Hatsuda, Y.-t. Huang and W. Siegel, First-quantized N = 4 Yang-Mills, JHEP 04 (2009) 058 [arXiv:0812.4569] [INSPIRE].
  56. [56]
    C.Y. Ju and W. Siegel, Systematizing semishortening conditions, Phys. Rev. D 90 (2014) 125004 [arXiv:1302.2515] [INSPIRE].
  57. [57]
    C. Fronsdal, Massless Fields with Integer Spin, Phys. Rev. D 18 (1978) 3624 [INSPIRE].
  58. [58]
    E.S. Fradkin and M.A. Vasiliev, Superalgebra of Higher Spins and Auxiliary Fields, Int. J. Mod. Phys. A 3 (1988) 2983 [INSPIRE].
  59. [59]
    M.A. Vasiliev, Higher spin gauge theories: Star product and AdS space, in The many faces of the superworld, M.A. Shifman ed., World Scientific (1999), pp. 533-610 [hep-th/9910096] [INSPIRE].
  60. [60]
    A. Mikhailov, Notes on higher spin symmetries, hep-th/0201019 [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of Mathematics, King’s College LondonLondonU.K.
  2. 2.Department of Physics and Astronomy, Theoretical PhysicsUppsala UniversityUppsalaSweden
  3. 3.Theoretical Physics, Imperial College, LondonLondonU.K.

Personalised recommendations