Advertisement

Journal of High Energy Physics

, 2018:21 | Cite as

Quantum gravity, fakeons and microcausality

  • Damiano Anselmi
  • Marco Piva
Open Access
Regular Article - Theoretical Physics
  • 27 Downloads

Abstract

We investigate the properties of fakeons in quantum gravity at one loop. The theory is described by a graviton multiplet, which contains the fluctuation hμν of the metric, a massive scalar ϕ and the spin-2 fakeon χμν . The fields ϕ and χμν are introduced explicitly at the level of the Lagrangian by means of standard procedures. We consider two options, where ϕ is quantized as a physical particle or a fakeon, and compute the absorptive part of the self-energy of the graviton multiplet. The width of χμν , which is negative, shows that the theory predicts the violation of causality at energies larger than the fakeon mass. We address this issue and compare the results with those of the Stelle theory, where χμν is a ghost instead of a fakeon.

Keywords

Beyond Standard Model Models of Quantum Gravity Renormalization Regularization and Renormalons 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    D. Anselmi, On the quantum field theory of the gravitational interactions, JHEP 06 (2017) 086 [http://renormalization.com/17a3/] [arXiv:1704.07728] [INSPIRE].
  2. [2]
    D. Anselmi, Fakeons And Lee-Wick Models, JHEP 02 (2018) 141 [http://renormalization.com/18a1/] [arXiv:1801.00915] [INSPIRE].
  3. [3]
    T.D. Lee and G.C. Wick, Negative Metric and the Unitarity of the S Matrix, Nucl. Phys. B 9 (1969) 209 [INSPIRE].
  4. [4]
    T.D. Lee and G.C. Wick, Finite Theory of Quantum Electrodynamics, Phys. Rev. D 2 (1970) 1033 [INSPIRE].
  5. [5]
    R.E. Cutkosky, P.V. Landshoff, D.I. Olive and J.C. Polkinghorne, A non-analytic S matrix, Nucl. Phys. B 12 (1969) 281 [INSPIRE].
  6. [6]
    B. Grinstein, D. O’Connell and M.B. Wise, Causality as an emergent macroscopic phenomenon: The Lee-Wick O(N) model, Phys. Rev. D 79 (2009) 105019 [arXiv:0805.2156] [INSPIRE].
  7. [7]
    D. Anselmi and M. Piva, A new formulation of Lee-Wick quantum field theory, JHEP 06 (2017) 066 [http://renormalization.com/17a1/] [arXiv:1703.04584] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    D. Anselmi and M. Piva, Perturbative unitarity of Lee-Wick quantum field theory, Phys. Rev. D 96 (2017) 045009 [http://renormalization.com/17a2/] [arXiv:1703.05563] [INSPIRE].
  9. [9]
    S.B. Giddings, The Boundary S matrix and the AdS to CFT dictionary, Phys. Rev. Lett. 83 (1999) 2707 [hep-th/9903048] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    V. Balasubramanian, S.B. Giddings and A.E. Lawrence, What do CFTs tell us about Anti-de Sitter space-times?, JHEP 03 (1999) 001 [hep-th/9902052] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  11. [11]
    J. Bros, H. Epstein, M. Gaudin, U. Moschella and V. Pasquier, Triangular invariants, three-point functions and particle stability on the de Sitter universe, Commun. Math. Phys. 295 (2010) 261 [arXiv:0901.4223] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    E.T. Akhmedov and P.V. Buividovich, Interacting Field Theories in de Sitter Space are Non-Unitary, Phys. Rev. D 78 (2008) 104005 [arXiv:0808.4106] [INSPIRE].
  13. [13]
    E.T. Akhmedov, Lecture notes on interacting quantum fields in de Sitter space, Int. J. Mod. Phys. D 23 (2014) 1430001 [arXiv:1309.2557] [INSPIRE].
  14. [14]
    D. Marolf, I.A. Morrison and M. Srednicki, Perturbative S-matrix for massive scalar fields in global de Sitter space, Class. Quant. Grav. 30 (2013) 155023 [arXiv:1209.6039] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    K. Hinterbichler and M. Saravani, Stückelberg approach to quadratic curvature gravity and its decoupling limits, Phys. Rev. D 93 (2016) 065006 [arXiv:1508.02401] [INSPIRE].
  16. [16]
    J. Julve and M. Tonin, Quantum Gravity with Higher Derivative Terms, Nuovo Cim. B 46 (1978) 137 [INSPIRE].
  17. [17]
    E.S. Fradkin and A.A. Tseytlin, Renormalizable asymptotically free quantum theory of gravity, Nucl. Phys. B 201 (1982) 469 [INSPIRE].
  18. [18]
    I.G. Avramidi and A.O. Barvinsky, Asymptotic freedom in higher derivative quantum gravity, Phys. Lett. B 159 (1985) 269 [INSPIRE].
  19. [19]
    N. Ohta, R. Percacci and A.D. Pereira, Gauges and functional measures in quantum gravity II: Higher derivative gravity, Eur. Phys. J. C 77 (2017) 611 [arXiv:1610.07991] [INSPIRE].
  20. [20]
    A. Salvio and A. Strumia, Agravity, JHEP 06 (2014) 080 [arXiv:1403.4226] [INSPIRE].
  21. [21]
    A. Salvio and A. Strumia, Agravity up to infinite energy, Eur. Phys. J. C 78 (2018) 124 [arXiv:1705.03896] [INSPIRE].
  22. [22]
    D. Anselmi and M. Piva, The Ultraviolet Behavior of Quantum Gravity, JHEP 05 (2018) 027 [http://renormalization.com/18a2/] [arXiv:1803.07777] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    S. Coleman, Acausality, in Erice 1969 Ettore Majorana School On Subnuclear Phenomena, Academic Press, New York (1970).Google Scholar
  24. [24]
    K.S. Stelle, Renormalization of Higher Derivative Quantum Gravity, Phys. Rev. D 16 (1977) 953 [INSPIRE].
  25. [25]
    D. Anselmi, A General Field-Covariant Formulation Of Quantum Field Theory, Eur. Phys. J. C 73 (2013) 2338 [http://renormalization.com/12a1/] [arXiv:1205.3279] [INSPIRE].
  26. [26]
    D. Anselmi, A Master Functional For Quantum Field Theory, Eur. Phys. J. C 73 (2013) 2385 [http://renormalization.com/12a2/] [arXiv:1205.3584] [INSPIRE].
  27. [27]
    D. Anselmi, Master Functional And Proper Formalism For Quantum Gauge Field Theory, Eur. Phys. J. C 73 (2013) 2363 [http://renormalization.com/12a3/] [arXiv:1205.3862] [INSPIRE].
  28. [28]
    R.E. Cutkosky, Singularities and discontinuities of Feynman amplitudes, J. Math. Phys. 1 (1960) 429 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    M.J.G. Veltman, Unitarity and causality in a renormalizable field theory with unstable particles, Physica 29 (1963) 186 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    W.L. van Neerven, Dimensional Regularization of Mass and Infrared Singularities in Two Loop On-shell Vertex Functions, Nucl. Phys. B 268 (1986) 453 [INSPIRE].
  31. [31]
    H. Dorn, Renormalization of Path Ordered Phase Factors and Related Hadron Operators in Gauge Field Theories, Fortsch. Phys. 34 (1986) 11 [INSPIRE].ADSMathSciNetGoogle Scholar
  32. [32]
    M. Consoli, W.F.L. Hollik and F. Jegerlehner, Electroweak radiative corrections for Z physics, in Z physics at LEP 1, Vol. 1: Standard physics, G. Altarelli, R. Kleiss and C. Verzegnassi eds., CERN-1989-008-V-1.Google Scholar
  33. [33]
    R.J. Eden, P.V. Landshoff, D.I. Olive and J.C. Polkinghorne, The Analytic S-Matrix, Cambridge University Press, Cambridge, U.K. (1966) [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Dipartimento di Fisica “Enrico Fermi”Università di PisaPisaItaly
  2. 2.INFN, Sezione di PisaPisaItaly

Personalised recommendations