Journal of High Energy Physics

, 2018:10 | Cite as

Collider production of electroweak resonances from γγ states

  • Rafael L. Delgado
  • Antonio Dobado
  • Miguel Espada
  • Felipe J. Llanes-EstradaEmail author
  • Iván León Merino
Open Access
Regular Article - Theoretical Physics


We estimate production cross sections for 2-body resonances of the Electroweak Symmetry Breaking sector (in WLWL and ZLZL rescattering) from γγ scattering. We employ unitarized Higgs Effective Field Theory amplitudes previously computed coupling the two photon channel to the EWSBS. We work in the Effective Photon Approximation and examine both ee+ collisions at energies of order 1–2 TeV (as relevant for future lepton machines) and pp collisions at LHC energies. Dynamically generating a spin-0 resonance around 1.5 TeV (by appropriately choosing the parameters of the effective theory) we find that the differential cross section per unit s, p t 2 is of order 0.01 fbarn/TeV4 at the LHC. Injecting a spin-2 resonance around 2 TeV we find an additional factor 100 suppression for pt up to 200 GeV. The very small cross sections put these γγ processes, though very clean, out of reach of immediate future searches.


Beyond Standard Model Chiral Lagrangians Higgs Physics Scattering Amplitudes 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    J.M. Cornwall, D.N. Levin and G. Tiktopoulos, Derivation of Gauge Invariance from High-Energy Unitarity Bounds on the s Matrix, Phys. Rev. D 10 (1974) 1145 [Erratum ibid. D 11 (1975) 972] [INSPIRE].
  2. [2]
    C.E. Vayonakis, Born Helicity Amplitudes and Cross-Sections in Nonabelian Gauge Theories, Lett. Nuovo Cim. 17 (1976) 383 [INSPIRE].CrossRefGoogle Scholar
  3. [3]
    B.W. Lee, C. Quigg and H.B. Thacker, Weak Interactions at Very High-Energies: The Role of the Higgs Boson Mass, Phys. Rev. D 16 (1977) 1519 [INSPIRE].ADSGoogle Scholar
  4. [4]
    M.S. Chanowitz and M.K. Gaillard, The TeV physics of strongly interacting Ws and Zs, Nucl. Phys. 261 (1985) 379.ADSCrossRefGoogle Scholar
  5. [5]
    M.S. Chanowitz, M. Golden and H. Georgi, Low-Energy Theorems for Strongly Interacting Ws and Zs, Phys. Rev. D 36 (1987) 1490 [INSPIRE].ADSGoogle Scholar
  6. [6]
    A. Dobado and J.R. Peláez, On The Equivalence theorem in the chiral perturbation theory description of the symmetry breaking sector of the standard model, Nucl. Phys. B 425 (1994) 110 [Erratum ibid. B 434 (1995) 475] [hep-ph/9401202] [INSPIRE].
  7. [7]
    A. Dobado and J.R. Pelaez, The Equivalence theorem for chiral lagrangians, Phys. Lett. B 329 (1994) 469 [Addendum ibid. B 335 (1994) 554] [hep-ph/9404239] [INSPIRE].
  8. [8]
    K. Piotrzkowski, Study of exclusive two-photon production of W+W- pairs in pp collisions at 7 TeV, and constraints on anomalous quartic couplings in CMS, PoS(Photon 2013) 026.Google Scholar
  9. [9]
    CMS collaboration, Evidence for exclusive γγW + W production and constraints on anomalous quartic gauge couplings in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, JHEP 08 (2016) 119 [arXiv:1604.04464] [INSPIRE].
  10. [10]
    ATLAS collaboration, Measurement of exclusive γγW + W production and search for exclusive Higgs boson production in pp collisions at \( \sqrt{s}=8 \) TeV using the ATLAS detector, Phys. Rev. D 94 (2016) 032011 [arXiv:1607.03745] [INSPIRE].
  11. [11]
    D0 collaboration, V.M. Abazov et al., Search for anomalous quartic WWγγ couplings in dielectron and missing energy final states in \( p\overline{p} \) collisions at \( \sqrt{s}=1.96 \) TeV, Phys. Rev. D 88 (2013) 012005 [arXiv:1305.1258] [INSPIRE].
  12. [12]
    M.G. Albrow, The CMS-TOTEM Precision Proton Spectrometer: CT-PPS, PoS(DIS2015)064.Google Scholar
  13. [13]
    P. Hamal, Physics prospects with the ALFA and AFP detectors, PoS(Photon 2013)027.Google Scholar
  14. [14]
    H. Abramowicz et al., Higgs physics at the CLIC electron-positron linear collider, Eur. Phys. J. C 77 (2017) 475 [arXiv:1608.07538] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    N. van der Kolk, The International Linear Collider - Physics and Perspectives, PoS(DIS2016)245 [arXiv:1607.00202].
  16. [16]
    K. Wang, T. Xu and L. Zhang, Collider Phenomenology of e e W W , Phys. Rev. D 95 (2017) 075021 [arXiv:1610.02618] [INSPIRE].ADSGoogle Scholar
  17. [17]
    S.J. Brodsky, Photon-Photon Collisions: Past and Future, Acta Phys. Polon. B 37 (2006) 619 [INSPIRE].ADSGoogle Scholar
  18. [18]
    CMS collaboration, Search for Resonances in the Dijet Mass Spectrum from 7 TeV pp Collisions at CMS, Phys. Lett. B 704 (2011) 123 [arXiv:1107.4771] [INSPIRE].
  19. [19]
    ATLAS collaboration, Search for heavy vector-like quarks coupling to light quarks in proton-proton collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Lett. B 712 (2012) 22 [arXiv:1112.5755] [INSPIRE].
  20. [20]
    ATLAS collaboration, Search for long-lived, multi-charged particles in pp collisions at \( \sqrt{s}=7 \) TeV using the ATLAS detector, Phys. Lett. B 722 (2013) 305 [arXiv:1301.5272] [INSPIRE].
  21. [21]
    R. Alonso, E.E. Jenkins and A.V. Manohar, A Geometric Formulation of Higgs Effective Field Theory: Measuring the Curvature of Scalar Field Space, Phys. Lett. B 754 (2016) 335 [arXiv:1511.00724] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  22. [22]
    D. Espriu, F. Mescia and B. Yencho, Radiative corrections to WL WL scattering in composite Higgs models, Phys. Rev. D 88 (2013) 055002 [arXiv:1307.2400] [INSPIRE].ADSGoogle Scholar
  23. [23]
    A. Azatov, R. Contino and J. Galloway, Model-Independent Bounds on a Light Higgs, JHEP 04 (2012) 127 [Erratum ibid. 1304 (2013) 140] [arXiv:1202.3415] [INSPIRE].
  24. [24]
    I. Brivio et al., Disentangling a dynamical Higgs, JHEP 03 (2014) 024 [arXiv:1311.1823] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    R. Alonso, M.B. Gavela, L. Merlo, S. Rigolin and J. Yepes, The Effective Chiral Lagrangian for a Light DynamicalHiggs Particle”, Phys. Lett. B 722 (2013) 330 [Erratum ibid. B 726 (2013) 926] [arXiv:1212.3305] [INSPIRE].
  26. [26]
    A. Pich, I. Rosell and J.J. Sanz-Cillero, Strongly Coupled Models with a Higgs-like Boson, EPJ Web Conf. 60 (2013) 19009 [arXiv:1307.1958] [INSPIRE].CrossRefGoogle Scholar
  27. [27]
    E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators I: Formalism and lambda Dependence, JHEP 10 (2013) 087 [arXiv:1308.2627] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  28. [28]
    C. Degrande et al., Effective Field Theory: A Modern Approach to Anomalous Couplings, Annals Phys. 335 (2013) 21 [arXiv:1205.4231] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    G. Buchalla, O. Catà and C. Krause, Complete Electroweak Chiral Lagrangian with a Light Higgs at NLO, Nucl. Phys. B 880 (2014) 552 [Erratum ibid. B 913 (2016) 475] [arXiv:1307.5017] [INSPIRE].
  30. [30]
    G. Buchalla and O. Catà, Effective Theory of a Dynamically Broken Electroweak Standard Model at NLO, JHEP 07 (2012) 101 [arXiv:1203.6510] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    R.L. Delgado, A. Dobado and F.J. Llanes-Estrada, LightHiggs, yet strong interactions, J. Phys. G 41 (2014) 025002 [arXiv:1308.1629] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    R.L. Delgado, A. Dobado and F.J. Llanes-Estrada, Unitarity, analyticity, dispersion relations and resonances in strongly interacting W L W L , Z L Z L and hh scattering, Phys. Rev. D 91 (2015) 075017 [arXiv:1502.04841] [INSPIRE].ADSGoogle Scholar
  33. [33]
    R.L. Delgado, A. Dobado and F.J. Llanes-Estrada, Possible new resonance from W L W L -hh interchannel coupling, Phys. Rev. Lett. 114 (2015) 221803 [arXiv:1408.1193] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    D. Espriu and B. Yencho, Longitudinal WW scattering in light of theHiggs bosondiscovery, Phys. Rev. D 87 (2013) 055017 [arXiv:1212.4158] [INSPIRE].ADSGoogle Scholar
  35. [35]
    T. Corbett, O.J.P. Éboli and M.C. Gonzalez-Garcia, Inverse amplitude method for the perturbative electroweak symmetry breaking sector: The singlet Higgs portal as a study case, Phys. Rev. D 93 (2016) 015005 [arXiv:1509.01585] [INSPIRE].ADSGoogle Scholar
  36. [36]
    M. Sekulla, W. Kilian, T. Ohl and J. Reuter, Effective Field Theory and Unitarity in Vector Boson Scattering, PoS(LHCP2016)052 [arXiv:1610.04131].
  37. [37]
    W. Kilian, T. Ohl, J. Reuter and M. Sekulla, High-Energy Vector Boson Scattering after the Higgs Discovery, Phys. Rev. D 91 (2015) 096007 [arXiv:1408.6207] [INSPIRE].ADSGoogle Scholar
  38. [38]
    A. Alboteanu, W. Kilian and J. Reuter, Resonances and Unitarity in Weak Boson Scattering at the LHC, JHEP 11 (2008) 010 [arXiv:0806.4145] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    R.L. Delgado, A. Dobado and F.J. Llanes-Estrada, Coupling WW, ZZ unitarized amplitudes to γγ in the TeV region, Eur. Phys. J. C 77 (2017) 205 [arXiv:1609.06206] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    E. Fermi, On the Theory of the impact between atoms and electrically charged particles, Z. Phys. 29 (1924) 315 [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    E.J. Williams, Correlation of certain collision problems with radiation theory, Kong. Dan. Vid. Sel. Mat. Fys. Med. 13N4 (1935) 1 [INSPIRE].
  42. [42]
    C.F. von Weizsacker, Radiation emitted in collisions of very fast electrons, Z. Phys. 88 (1934) 612 [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    I.Ya. Pomeranchuk and I.M. Shmushkevich, On processes in the interaction of -quanta with unstable particles, Nucl. Phys. 23 (1961) 452.Google Scholar
  44. [44]
    V.M. Budnev, I.F. Ginzburg, G.V. Meledin and V.G. Serbo, The Two photon particle production mechanism. Physical problems. Applications. Equivalent photon approximation, Phys. Rept. 15 (1975) 181 [INSPIRE].
  45. [45]
    H. Terazawa, Two photon processes for particle production at high-energies, Rev. Mod. Phys. 45 (1973) 615 [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    R.L. Delgado, A. Dobado, M.J. Herrero and J.J. Sanz-Cillero, One-loop γγ → W L+ W L and γγZ L Z L from the Electroweak Chiral Lagrangian with a light Higgs-like scalar, JHEP 07 (2014) 149 [arXiv:1404.2866] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    R.L. Delgado, A. Dobado and F.J. Llanes-Estrada, One-loop W L W L and Z L Z L scattering from the electroweak Chiral Lagrangian with a light Higgs-like scalar, JHEP 02 (2014) 121 [arXiv:1311.5993] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    J. Bijnens and F. Cornet, Two Pion Production in Photon-Photon Collisions, Nucl. Phys. B 296 (1988) 557 [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    R.L. Delgado et al., Production of vector resonances at the LHC via WZ-scattering: a unitarized EChL analysis, JHEP 11 (2017) 098 [arXiv:1707.04580] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    D.H. Lyth, The equivalent photon approximation, J. Phys. Colloq. 35 (1974) 113 [INSPIRE].CrossRefGoogle Scholar
  51. [51]
    G. Buchalla, O. Catà, A. Celis and C. Krause, Fitting Higgs Data with Nonlinear Effective Theory, Eur. Phys. J. C 76 (2016) 233 [arXiv:1511.00988] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  52. [52]
    J. Nystrand, Electromagnetic interactions in nucleus-nucleus and proton-proton collisions, Nucl. Phys. A 752 (2005) 470 [hep-ph/0412096] [INSPIRE].
  53. [53]
    D. d’Enterria, P. Rebello Teles and D.E. Martins, Measurements of γγHiggs and γγW + W in e + e collisions at the Future Circular Collider, in Proceedings of 17th conference on Elastic and Diffractive Scattering (EDS Blois 2017), Prague Czech Republic (2017) [arXivid1712.07023] [INSPIRE].
  54. [54]
    LHC experiments Committee, CMS-TOTEM Precision Proton Spectrometer, CERN-LHCC-2014-021, TOTEM-TDR-003, CMS-TDR-13 (2014).
  55. [55]
    ATLAS collaboration, B. Giacobbe, Results and Perspectives in Forward Physics with ATLAS, Nucl. Part. Phys. Proc. 279-281 (2016) 130 [INSPIRE].
  56. [56]
    D. d’Enterria and G.G. da Silveira, Observing light-by-light scattering at the Large Hadron Collider, Phys. Rev. Lett. 111 (2013) 080405 [Erratum ibid. 116 (2016) 129901] [arXiv:1305.7142] [INSPIRE].
  57. [57]
    B.A. Kniehl, Elastic e p scattering and the Weizsacker-Williams approximation, Phys. Lett. B 254 (1991) 267 [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    M. Drees and D. Zeppenfeld, Production of Supersymmetric Particles in Elastic ep Collisions, Phys. Rev. D 39 (1989) 2536 [INSPIRE].ADSGoogle Scholar
  59. [59]
    A. Esmaili, S. Khatibi and M. Mohammadi Najafabadi, Constraining the monochromatic gamma-rays from dark matter annihilation by the LHC, Phys. Rev. D 96 (2017) 015027 [arXiv:1611.09320] [INSPIRE].ADSGoogle Scholar
  60. [60]
    I.T. Lorenz and U.-G. Meissner, Reduction of the proton radius discrepancy by 3σ, Phys. Lett. B 737 (2014) 57 [arXiv:1406.2962] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    G.P. Lepage and S.J. Brodsky, Exclusive Processes in Quantum Chromodynamics: The Form-Factors of Baryons at Large Momentum Transfer, Phys. Rev. Lett. 43 (1979) 545 [Erratum ibid. 43 (1979) 1625] [INSPIRE].
  62. [62]
    S.J. Brodsky and G.R. Farrar, Scaling Laws at Large Transverse Momentum, Phys. Rev. Lett. 31 (1973) 1153 [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    J.J. Kelly, Simple parametrization of nucleon form factors, Phys. Rev. C 70 (2004) 068202 [INSPIRE].ADSGoogle Scholar
  64. [64]
    J. Segovia, I.C. Cloet, C.D. Roberts and S.M. Schmidt, Nucleon and Δ elastic and transition form factors, Few Body Syst. 55 (2014) 1185 [arXiv:1408.2919] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    C. Schmidt, J. Pumplin, D. Stump and C.P. Yuan, CT14QED parton distribution functions from isolated photon production in deep inelastic scattering, Phys. Rev. D 93 (2016) 114015 [arXiv:1509.02905] [INSPIRE].ADSGoogle Scholar
  66. [66]
    NNPDF collaboration, R.D. Ball et al., Parton distributions for the LHC Run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE].
  67. [67]
    NNPDF collaboration, R.D. Ball et al., Parton distributions with QED corrections, Nucl. Phys. B 877 (2013) 290 [arXiv:1308.0598] [INSPIRE].
  68. [68]
    A.D. Martin, R.G. Roberts, W.J. Stirling and R.S. Thorne, Parton distributions incorporating QED contributions, Eur. Phys. J. C 39 (2005) 155 [hep-ph/0411040] [INSPIRE].
  69. [69]
    A. Manohar, P. Nason, G.P. Salam and G. Zanderighi, How bright is the proton? A precise determination of the photon parton distribution function, Phys. Rev. Lett. 117 (2016) 242002 [arXiv:1607.04266] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    J. Gao, L. Harland-Lang and J. Rojo, The Structure of the Proton in the LHC Precision Era, Phys. Rept. 742 (2018) 1 [arXiv:1709.04922] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  71. [71]
    L.A. Harland-Lang, V.A. Khoze and M.G. Ryskin, The photon PDF in events with rapidity gaps, Eur. Phys. J. C 76 (2016) 255 [arXiv:1601.03772] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    H. Gomes, S. Gryb, T. Koslowski, F. Mercati and L. Smolin, A Shape Dynamical Approach to Holographic Renormalization, Eur. Phys. J. C 75 (2015) 3 [arXiv:1305.6315] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    A.D. Martin and M.G. Ryskin, The photon PDF of the proton, Eur. Phys. J. C 74 (2014) 3040 [arXiv:1406.2118] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    M. Gluck, C. Pisano and E. Reya, The Polarized and unpolarized photon content of the nucleon, Phys. Lett. B 540 (2002) 75 [hep-ph/0206126] [INSPIRE].
  75. [75]
    CMS collaboration, Search for high-mass diphoton resonances in proton–proton collisions at 13 TeV and combination with 8 TeV search, Phys. Lett. B 767 (2017) 147 [arXiv:1609.02507] [INSPIRE].
  76. [76]
    K. Ghosh, S. Jana and S. Nandi, Neutrino Mass Generation at TeV Scale and New Physics Signatures from Charged Higgs at the LHC for Photon Initiated Processes, JHEP 03 (2018) 180 [arXiv:1705.01121] [INSPIRE].CrossRefGoogle Scholar
  77. [77]
    K.S. Babu and S. Jana, Probing Doubly Charged Higgs Bosons at the LHC through Photon Initiated Processes, Phys. Rev. D 95 (2017) 055020 [arXiv:1612.09224] [INSPIRE].ADSGoogle Scholar
  78. [78]
    P. Lebiedowicz and A. Szczurek, Exclusive production of heavy charged Higgs boson pairs in the ppppH + H reaction at the LHC and a future circular collider, Phys. Rev. D 91 (2015) 095008 [arXiv:1502.03323] [INSPIRE].ADSGoogle Scholar
  79. [79]
    M. Luszczak, A. Szczurek and C. Royon, W + W pair production in proton-proton collisions: small missing terms, JHEP 02 (2015) 098 [arXiv:1409.1803] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    LHC Higgs Cross Section Working Group collaboration, Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector, arXiv:1610.07922 [INSPIRE].
  81. [81]
    T. Appelquist and C.W. Bernard, Strongly Interacting Higgs Bosons, Phys. Rev. D 22 (1980) 200 [INSPIRE].ADSGoogle Scholar
  82. [82]
    E. Yehudai, Probing W gamma couplings using γγW + W , Phys. Rev. D 44 (1991) 3434 [INSPIRE].ADSGoogle Scholar
  83. [83]
    A. Denner, S. Dittmaier and R. Schuster, Radiative corrections to γγW + W in the electroweak standard model, Nucl. Phys. B 452 (1995) 80 [hep-ph/9503442] [INSPIRE].
  84. [84]
    J. de Blas, O. Eberhardt and C. Krause, Current and Future Constraints on Higgs Couplings in the Nonlinear Effective Theory, JHEP 07 (2018) 048 [arXiv:1803.00939] [INSPIRE].CrossRefGoogle Scholar
  85. [85]
    A. Dobado, F.J. Llanes-Estrada and J.J. Sanz-Cillero, Resonant production of Wh and Zh at the LHC, JHEP 03 (2018) 159 [arXiv:1711.10310] [INSPIRE].CrossRefGoogle Scholar
  86. [86]
    R. Delgado López, Study of the Electroweak Symmetry Breaking Sector for the LHC, Springer Theses, Springer, Berlin Germany (2017).Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Rafael L. Delgado
    • 1
    • 2
  • Antonio Dobado
    • 1
  • Miguel Espada
    • 1
  • Felipe J. Llanes-Estrada
    • 1
    Email author
  • Iván León Merino
    • 1
  1. 1.Departamento de Física Teórica IUniversidad Complutense de MadridMadridSpain
  2. 2.Physik-Department T30fTechnische Universität MünchenGarchingGermany

Personalised recommendations