Journal of High Energy Physics

, 2017:207 | Cite as

Chiral global embedding of fibre inflation models

  • Michele Cicoli
  • David Ciupke
  • Victor A. Diaz
  • Veronica Guidetti
  • Francesco Muia
  • Pramod Shukla
Open Access
Regular Article - Theoretical Physics


We construct explicit examples of fibre inflation models which are globally embedded in type IIB orientifolds with chiral matter on D7-branes and full closed string moduli stabilisation. The minimal setup involves a Calabi-Yau threefold with h1,1 = 4 Kähler moduli which features multiple K3 fibrations and a del Pezzo divisor supporting non-perturbative effects. We perform a consistent choice of orientifold involution, brane setup and gauge fluxes which leads to chiral matter and a moduli-dependent Fayet-Iliopoulos term. After D-term stabilisation, the number of Kähler moduli is effectively reduced to 3 and the internal volume reduces to the one of fibre inflation models. The inflationary potential is generated by suitable string loop corrections in combination with higher derivative effects. We analyse the inflationary dynamics both in the single-field approximation and by numerically deriving the full multi-field evolution in detail. Interestingly, we find that the Kähler cone conditions set strong constraints on the allowed inflaton field range.


Compactification and String Models Cosmology of Theories beyond the SM Flux compactifications Superstring Vacua 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    D.H. Lyth, What would we learn by detecting a gravitational wave signal in the cosmic microwave background anisotropy?, Phys. Rev. Lett. 78 (1997) 1861 [hep-ph/9606387] [INSPIRE].
  2. [2]
    L. McAllister and E. Silverstein, String cosmology: a review, Gen. Rel. Grav. 40 (2008) 565 [arXiv:0710.2951] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    D. Baumann and L. McAllister, Advances in inflation in string theory, Ann. Rev. Nucl. Part. Sci. 59 (2009) 67 [arXiv:0901.0265] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    M. Cicoli and F. Quevedo, String moduli inflation: an overview, Class. Quant. Grav. 28 (2011) 204001 [arXiv:1108.2659] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    C.P. Burgess, M. Cicoli and F. Quevedo, String inflation after Planck 2013, JCAP 11 (2013) 003 [arXiv:1306.3512] [INSPIRE].
  6. [6]
    C.P. Burgess, M. Cicoli, F. Quevedo and M. Williams, Inflating with large effective fields, JCAP 11 (2014) 045 [arXiv:1404.6236] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    R. Blumenhagen, S. Moster and E. Plauschinn, Moduli stabilisation versus chirality for MSSM like type IIB orientifolds, JHEP 01 (2008) 058 [arXiv:0711.3389] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    D.R. Green, Reheating closed string inflation, Phys. Rev. D 76 (2007) 103504 [arXiv:0707.3832] [INSPIRE].ADSGoogle Scholar
  9. [9]
    R.H. Brandenberger, A. Knauf and L.C. Lorenz, Reheating in a brane monodromy inflation model, JHEP 10 (2008) 110 [arXiv:0808.3936] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    N. Barnaby, J.R. Bond, Z. Huang and L. Kofman, Preheating after modular inflation, JCAP 12 (2009) 021 [arXiv:0909.0503] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    M. Cicoli and A. Mazumdar, Reheating for closed string inflation, JCAP 09 (2010) 025 [arXiv:1005.5076] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    M. Cicoli and A. Mazumdar, Inflation in string theory: a graceful exit to the real world, Phys. Rev. D 83 (2011) 063527 [arXiv:1010.0941] [INSPIRE].
  13. [13]
    K. Dutta and A. Maharana, Inflationary constraints on modulus dominated cosmology, Phys. Rev. D 91 (2015) 043503 [arXiv:1409.7037] [INSPIRE].ADSGoogle Scholar
  14. [14]
    M. Cicoli, K. Dutta, A. Maharana and F. Quevedo, Moduli vacuum misalignment and precise predictions in string inflation, JCAP 08 (2016) 006 [arXiv:1604.08512] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    S. Bhattacharya, K. Dutta and A. Maharana, Constrains on Kähler moduli inflation from reheating, Phys. Rev. D 96 (2017) 083522 [Addendum ibid. D 96 (2017) 109901] [arXiv:1707.07924] [INSPIRE].
  16. [16]
    M. Cicoli, J.P. Conlon and F. Quevedo, Dark radiation in LARGE volume models, Phys. Rev. D 87 (2013) 043520 [arXiv:1208.3562] [INSPIRE].
  17. [17]
    T. Higaki and F. Takahashi, Dark radiation and dark matter in large volume compactifications, JHEP 11 (2012) 125 [arXiv:1208.3563] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    A. Hebecker, P. Mangat, F. Rompineve and L.T. Witkowski, Dark radiation predictions from general large volume scenarios, JHEP 09 (2014) 140 [arXiv:1403.6810] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    M. Cicoli and F. Muia, General analysis of dark radiation in sequestered string models, JHEP 12 (2015) 152 [arXiv:1511.05447] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  20. [20]
    B.S. Acharya, P. Kumar, K. Bobkov, G. Kane, J. Shao and S. Watson, Non-thermal dark matter and the moduli problem in string frameworks, JHEP 06 (2008) 064 [arXiv:0804.0863] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    R. Allahverdi, M. Cicoli, B. Dutta and K. Sinha, Nonthermal dark matter in string compactifications, Phys. Rev. D 88 (2013) 095015 [arXiv:1307.5086] [INSPIRE].ADSGoogle Scholar
  22. [22]
    R. Allahverdi, M. Cicoli, B. Dutta and K. Sinha, Correlation between dark matter and dark radiation in string compactifications, JCAP 10 (2014) 002 [arXiv:1401.4364] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    L. Aparicio et al., Non-thermal CMSSM with a 125 GeV Higgs, JHEP 05 (2015) 098 [arXiv:1502.05672] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    L. Aparicio, M. Cicoli, B. Dutta, F. Muia and F. Quevedo, Light higgsino dark matter from non-thermal cosmology, JHEP 11 (2016) 038 [arXiv:1607.00004] [INSPIRE].CrossRefGoogle Scholar
  25. [25]
    G. Kane, J. Shao, S. Watson and H.-B. Yu, The baryon-dark matter ratio via moduli decay after Affleck-Dine baryogenesis, JCAP 11 (2011) 012 [arXiv:1108.5178] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    R. Allahverdi, M. Cicoli and F. Muia, Affleck-Dine baryogenesis in type IIB string models, JHEP 06 (2016) 153 [arXiv:1604.03120] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  27. [27]
    J.P. Conlon, R. Kallosh, A.D. Linde and F. Quevedo, Volume modulus inflation and the gravitino mass problem, JCAP 09 (2008) 011 [arXiv:0806.0809] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    M. Cicoli, F. Muia and F.G. Pedro, Microscopic origin of volume modulus inflation, JCAP 12 (2015) 040 [arXiv:1509.07748] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    T. He, S. Kachru and A. Westphal, Gravity waves and the LHC: towards high-scale inflation with low-energy SUSY, JHEP 06 (2010) 065 [arXiv:1003.4265] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  30. [30]
    S. Antusch, K. Dutta and S. Halter, Combining high-scale inflation with low-energy SUSY, JHEP 03 (2012) 105 [arXiv:1112.4488] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  31. [31]
    W. Buchmüller, E. Dudas, L. Heurtier and C. Wieck, Large-field inflation and supersymmetry breaking, JHEP 09 (2014) 053 [arXiv:1407.0253] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  32. [32]
    J.P. Conlon and F. Quevedo, Kähler moduli inflation, JHEP 01 (2006) 146 [hep-th/0509012] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    M. Cicoli, I. García-Etxebarria, C. Mayrhofer, F. Quevedo, P. Shukla and R. Valandro, Global orientifolded quivers with inflation, JHEP 11 (2017) 134 [arXiv:1706.06128] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  34. [34]
    V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    M. Cicoli, J.P. Conlon and F. Quevedo, General analysis of LARGE volume scenarios with string loop moduli stabilisation, JHEP 10 (2008) 105 [arXiv:0805.1029] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  36. [36]
    M. Cicoli, C.P. Burgess and F. Quevedo, Fibre inflation: observable gravity waves from IIB string compactifications, JCAP 03 (2009) 013 [arXiv:0808.0691] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    M. Berg, M. Haack and B. Körs, String loop corrections to Kähler potentials in orientifolds, JHEP 11 (2005) 030 [hep-th/0508043] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    M. Berg, M. Haack and E. Pajer, Jumping through loops: on soft terms from large volume compactifications, JHEP 09 (2007) 031 [arXiv:0704.0737] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    M. Berg, M. Haack, J.U. Kang and S. Sjörs, Towards the one-loop Kähler metric of Calabi-Yau orientifolds, JHEP 12 (2014) 077 [arXiv:1407.0027] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  40. [40]
    M. Haack and J.U. Kang, One-loop Einstein-Hilbert term in minimally supersymmetric type IIB orientifolds, JHEP 02 (2016) 160 [arXiv:1511.03957] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  41. [41]
    D. Ciupke, J. Louis and A. Westphal, Higher-derivative supergravity and moduli stabilization, JHEP 10 (2015) 094 [arXiv:1505.03092] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  42. [42]
    T.W. Grimm, K. Mayer and M. Weissenbacher, Higher derivatives in type II and M-theory on Calabi-Yau threefolds, arXiv:1702.08404 [INSPIRE].
  43. [43]
    M. Cicoli, J.P. Conlon and F. Quevedo, Systematics of string loop corrections in type IIB Calabi-Yau flux compactifications, JHEP 01 (2008) 052 [arXiv:0708.1873] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    B.J. Broy, D. Ciupke, F.G. Pedro and A. Westphal, Starobinsky-type inflation from α -corrections, JCAP 01 (2016) 001 [arXiv:1509.00024] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    M. Cicoli, D. Ciupke, S. de Alwis and F. Muia, α inflation: moduli stabilisation and observable tensors from higher derivatives, JHEP 09 (2016) 026 [arXiv:1607.01395] [INSPIRE].
  46. [46]
    C.P. Burgess, M. Cicoli, S. de Alwis and F. Quevedo, Robust inflation from fibrous strings, JCAP 05 (2016) 032 [arXiv:1603.06789] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results XX. Constraints on inflation, Astron. Astrophys. 594 (2016) A20 [arXiv:1502.02114] [INSPIRE].
  48. [48]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  49. [49]
    R. Kallosh, A. Linde, D. Roest, A. Westphal and Y. Yamada, Fibre inflation and α-attractors, arXiv:1707.05830 [INSPIRE].
  50. [50]
    M. Cicoli, F. Muia and P. Shukla, Global embedding of fibre inflation models, JHEP 11 (2016) 182 [arXiv:1611.04612] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  51. [51]
    M. Cicoli, M. Kreuzer and C. Mayrhofer, Toric K3-fibred Calabi-Yau manifolds with del Pezzo divisors for string compactifications, JHEP 02 (2012) 002 [arXiv:1107.0383] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  52. [52]
    M. Kreuzer and H. Skarke, Complete classification of reflexive polyhedra in four-dimensions, Adv. Theor. Math. Phys. 4 (2002) 1209 [hep-th/0002240] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  53. [53]
    S. Angus, Dark radiation in anisotropic LARGE volume compactifications, JHEP 10 (2014) 184 [arXiv:1403.6473] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    M. Cicoli, J.P. Conlon, A. Maharana and F. Quevedo, A note on the magnitude of the flux superpotential, JHEP 01 (2014) 027 [arXiv:1310.6694] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    K. Becker, M. Becker, M. Haack and J. Louis, Supersymmetry breaking and α corrections to flux induced potentials, JHEP 06 (2002) 060 [hep-th/0204254] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  56. [56]
    R. Minasian, T.G. Pugh and R. Savelli, F-theory at order α 3, JHEP 10 (2015) 050 [arXiv:1506.06756] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  57. [57]
    F. Bonetti and M. Weissenbacher, The Euler characteristic correction to the Kähler potential — revisited, JHEP 01 (2017) 003 [arXiv:1608.01300] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  58. [58]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, De Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  59. [59]
    R. Kallosh and T. Wrase, Emergence of spontaneously broken supersymmetry on an anti-D3-brane in KKLT dS vacua, JHEP 12 (2014) 117 [arXiv:1411.1121] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    E.A. Bergshoeff, K. Dasgupta, R. Kallosh, A. Van Proeyen and T. Wrase, \( \overline{D}3 \) and dS, JHEP 05 (2015) 058 [arXiv:1502.07627] [INSPIRE].
  61. [61]
    R. Kallosh, F. Quevedo and A.M. Uranga, String theory realizations of the nilpotent goldstino, JHEP 12 (2015) 039 [arXiv:1507.07556] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  62. [62]
    L. Aparicio, F. Quevedo and R. Valandro, Moduli stabilisation with nilpotent goldstino: vacuum structure and SUSY breaking, JHEP 03 (2016) 036 [arXiv:1511.08105] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    I. García-Etxebarria, F. Quevedo and R. Valandro, Global string embeddings for the nilpotent goldstino, JHEP 02 (2016) 148 [arXiv:1512.06926] [INSPIRE].
  64. [64]
    M.P. Garcia del Moral, S. Parameswaran, N. Quiroz and I. Zavala, Anti-D3 branes and moduli in non-linear supergravity, JHEP 10 (2017) 185 [arXiv:1707.07059] [INSPIRE].
  65. [65]
    J. Moritz, A. Retolaza and A. Westphal, Towards de Sitter from 10D, arXiv:1707.08678 [INSPIRE].
  66. [66]
    M. Cicoli, F. Quevedo and R. Valandro, De Sitter from T-branes, JHEP 03 (2016) 141 [arXiv:1512.04558] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    M. Cicoli, A. Maharana, F. Quevedo and C.P. Burgess, De Sitter string vacua from dilaton-dependent non-perturbative effects, JHEP 06 (2012) 011 [arXiv:1203.1750] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    A. Westphal, String cosmology — large-field inflation in string theory, Adv. Ser. Direct. High Energy Phys. 22 (2015) 351 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  69. [69]
    M. Remazeilles, C. Dickinson, H.K.K. Eriksen and I.K. Wehus, Sensitivity and foreground modelling for large-scale cosmic microwave background B-mode polarization satellite missions, Mon. Not. Roy. Astron. Soc. 458 (2016) 2032 [arXiv:1509.04714] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    M. Remazeilles, C. Dickinson, H.K. Eriksen and I.K. Wehus, Joint Bayesian estimation of tensor and lensing B-modes in the power spectrum of CMB polarization data, arXiv:1707.02981 [INSPIRE].
  71. [71]
    R. Minasian and G.W. Moore, K theory and Ramond-Ramond charge, JHEP 11 (1997) 002 [hep-th/9710230] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  72. [72]
    D.S. Freed and E. Witten, Anomalies in string theory with D-branes, Asian J. Math. 3 (1999) 819 [hep-th/9907189] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  73. [73]
    M. Dine, N. Seiberg and E. Witten, Fayet-Iliopoulos terms in string theory, Nucl. Phys. B 289 (1987) 589 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  74. [74]
    M. Dine, I. Ichinose and N. Seiberg, F terms and d terms in string theory, Nucl. Phys. B 293 (1987) 253 [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    R. Altman, J. Gray, Y.-H. He, V. Jejjala and B.D. Nelson, A Calabi-Yau database: threefolds constructed from the Kreuzer-Skarke list, JHEP 02 (2015) 158 [arXiv:1411.1418] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  76. [76]
    R. Blumenhagen, B. Jurke, T. Rahn and H. Roschy, Cohomology of line bundles: a computational algorithm, J. Math. Phys. 51 (2010) 103525 [arXiv:1003.5217] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  77. [77]
    R. Blumenhagen, B. Jurke and T. Rahn, Computational tools for cohomology of toric varieties, Adv. High Energy Phys. 2011 (2011) 152749 [arXiv:1104.1187] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  78. [78]
    M. Cicoli, S. Krippendorf, C. Mayrhofer, F. Quevedo and R. Valandro, D-branes at del Pezzo singularities: global embedding and moduli stabilisation, JHEP 09 (2012) 019 [arXiv:1206.5237] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  79. [79]
    P.G. Camara, L.E. Ibáñez and A.M. Uranga, Flux-induced SUSY-breaking soft terms on D7-D3 brane systems, Nucl. Phys. B 708 (2005) 268 [hep-th/0408036] [INSPIRE].
  80. [80]
    D. Ciupke, Scalar potential from higher derivative N = 1 superspace, arXiv:1605.00651 [INSPIRE].
  81. [81]
    M. Cicoli, S. Downes and B. Dutta, Power suppression at large scales in string inflation, JCAP 12 (2013) 007 [arXiv:1309.3412] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    M. Cicoli, S. Downes, B. Dutta, F.G. Pedro and A. Westphal, Just enough inflation: power spectrum modifications at large scales, JCAP 12 (2014) 030 [arXiv:1407.1048] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    D. Klaewer and E. Palti, Super-Planckian spatial field variations and quantum gravity, JHEP 01 (2017) 088 [arXiv:1610.00010] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  84. [84]
    R. Blumenhagen, I. Valenzuela and F. Wolf, The swampland conjecture and F-term axion monodromy inflation, JHEP 07 (2017) 145 [arXiv:1703.05776] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  85. [85]
    J.J. Blanco-Pillado, D. Buck, E.J. Copeland, M. Gomez-Reino and N.J. Nunes, Kähler moduli inflation revisited, JHEP 01 (2010) 081 [arXiv:0906.3711] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  86. [86]
    D.H. Lyth and D. Wands, Generating the curvature perturbation without an inflaton, Phys. Lett. B 524 (2002) 5 [hep-ph/0110002] [INSPIRE].
  87. [87]
    T. Moroi and T. Takahashi, Effects of cosmological moduli fields on cosmic microwave background, Phys. Lett. B 522 (2001) 215 [Erratum ibid. B 539 (2002) 303] [hep-ph/0110096] [INSPIRE].
  88. [88]
    C.P. Burgess, M. Cicoli, M. Gomez-Reino, F. Quevedo, G. Tasinato and I. Zavala, Non-standard primordial fluctuations and non-Gaussianity in string inflation, JHEP 08 (2010) 045 [arXiv:1005.4840] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  89. [89]
    M. Cicoli, D. Ciupke and P. Shukla, A geometrical upper bound on the inflaton range, work in progress.Google Scholar
  90. [90]
    P. Cabella, A. Di Marco and G. Pradisi, Fiber inflation and reheating, Phys. Rev. D 95 (2017) 123528 [arXiv:1704.03209] [INSPIRE].ADSGoogle Scholar
  91. [91]
    S. Antusch, F. Cefala, S. Krippendorf, F. Muia, S. Orani and F. Quevedo, Oscillons from string moduli, arXiv:1708.08922 [INSPIRE].
  92. [92]
    M. Cicoli, C. Mayrhofer and R. Valandro, Moduli stabilisation for chiral global models, JHEP 02 (2012) 062 [arXiv:1110.3333] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Dipartimento di Fisica e AstronomiaUniversità di BolognaBolognaItaly
  2. 2.INFN, Sezione di BolognaBolognaItaly
  3. 3.Abdus Salam ICTPTriesteItaly
  4. 4.Rudolf Peierls Centre for Theoretical PhysicsUniversity of OxfordOxfordU.K.

Personalised recommendations