Journal of High Energy Physics

, 2017:176 | Cite as

Direct determination of Wilson coefficients using B0K∗0μ+μ decays

  • T. Hurth
  • C. Langenbruch
  • F. Mahmoudi
Open Access
Regular Article - Experimental Physics


A method to directly determine the Wilson coefficients for rare bs transitions using B0K∗0μ+μ decays in an unbinned maximum likelihood fit is presented. The method has several advantages compared to the conventional determination of the Wilson coefficients from angular observables that are determined in bins of q2, the square of the mass of the dimuon system. The method uses all experimental information in a more efficient way and automatically accounts for experimental correlations. Performing pseudoexperiments, we show the improved sensitivity of the proposed method for the Wilson coefficients. We also demonstrate that it will be possible to use the method with the combined Run 1 and 2 data sample taken by the LHCb experiment.


B physics Flavour Changing Neutral Currents Hadron-Hadron scattering (experiments) Rare decay 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    BaBar collaboration, B. Aubert et al., Measurements of branching fractions, rate asymmetries and angular distributions in the rare decays BK+ and BK +, Phys. Rev. D 73 (2006) 092001 [hep-ex/0604007] [INSPIRE].
  2. [2]
    BaBar collaboration, J.P. Lees et al., Measurement of angular asymmetries in the decays B K +, Phys. Rev. D 93 (2016) 052015 [arXiv:1508.07960] [INSPIRE].
  3. [3]
    Belle collaboration, J.T. Wei et al., Measurement of the differential branching fraction and forward-backward asymmetry for B K (∗)+, Phys. Rev. Lett. 103 (2009) 171801 [arXiv:0904.0770] [INSPIRE].
  4. [4]
    CDF collaboration, T. Aaltonen et al., Measurements of the Angular Distributions in the Decays B K (∗) μ + μ at CDF, Phys. Rev. Lett. 108 (2012) 081807 [arXiv:1108.0695] [INSPIRE].
  5. [5]
    CMS collaboration, Angular analysis and branching fraction measurement of the decay B 0 K ∗0 μ + μ , Phys. Lett. B 727 (2013) 77 [arXiv:1308.3409] [INSPIRE].
  6. [6]
    CMS collaboration, Angular analysis of the decay B 0 K ∗0 μ + μ from pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Lett. B 753 (2016) 424 [arXiv:1507.08126] [INSPIRE].
  7. [7]
    LHCb collaboration, Angular analysis of the B 0 K ∗0 μ + μ decay using 3 fb 1 of integrated luminosity, JHEP 02 (2016) 104 [arXiv:1512.04442] [INSPIRE].
  8. [8]
    Belle collaboration, S. Wehle et al., Lepton-Flavor-Dependent Angular Analysis of B K +, Phys. Rev. Lett. 118 (2017) 111801 [arXiv:1612.05014] [INSPIRE].
  9. [9]
    ATLAS collaboration, Angular analysis of B d0 → K μ + μ decays in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, ATLAS-CONF-2017-023 (2017).
  10. [10]
    CMS collaboration, Measurement of the P 1 and P 5 angular parameters of the decay B0 K∗0 μ + μ in proton-proton collisions at \( \sqrt{s}=8 \) TeV, CMS-PAS-BPH-15-008 (2017).
  11. [11]
    A. Bharucha, D.M. Straub and R. Zwicky, B V ℓ+ in the Standard Model from light-cone sum rules, JHEP 08 (2016) 098 [arXiv:1503.05534] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    R.R. Horgan, Z. Liu, S. Meinel and M. Wingate, Lattice QCD calculation of form factors describing the rare decays B K + and B s ϕ+, Phys. Rev. D 89 (2014) 094501 [arXiv:1310.3722] [INSPIRE].ADSGoogle Scholar
  13. [13]
    R.R. Horgan, Z. Liu, S. Meinel and M. Wingate, Rare B decays using lattice QCD form factors, PoS(LATTICE2014)372 [arXiv:1501.00367] [INSPIRE].
  14. [14]
    S. Descotes-Genon, L. Hofer, J. Matias and J. Virto, On the impact of power corrections in the prediction of B K μ + μ observables, JHEP 12 (2014) 125 [arXiv:1407.8526] [INSPIRE].
  15. [15]
    S. Descotes-Genon, T. Hurth, J. Matias and J. Virto, Optimizing the basis of B K ll observables in the full kinematic range, JHEP 05 (2013) 137 [arXiv:1303.5794] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    LHCb collaboration, Measurement of Form-Factor-Independent Observables in the Decay B 0 K ∗0 μ + μ , Phys. Rev. Lett. 111 (2013) 191801 [arXiv:1308.1707] [INSPIRE].
  17. [17]
    LHCb collaboration, Measurements of the S-wave fraction in B 0 K + π μ + μ decays and the B 0 K (892)0 μ + μ differential branching fraction, JHEP 11 (2016) 047 [arXiv:1606.04731] [INSPIRE].
  18. [18]
    LHCb collaboration, Angular analysis and differential branching fraction of the decay Bs0 → ϕμ + μ , JHEP 09 (2015) 179 [arXiv:1506.08777] [INSPIRE].
  19. [19]
    LHCb collaboration, Differential branching fractions and isospin asymmetries of B K (∗) μ + μ decays, JHEP 06 (2014) 133 [arXiv:1403.8044] [INSPIRE].
  20. [20]
    LHCb collaboration, Measurement of the phase difference between short- and long-distance amplitudes in the B + K + μ + μ decay, Eur. Phys. J. C 77 (2017) 161 [arXiv:1612.06764] [INSPIRE].
  21. [21]
    LHCb collaboration, Test of lepton universality using B + K ++ decays, Phys. Rev. Lett. 113 (2014) 151601 [arXiv:1406.6482] [INSPIRE].
  22. [22]
    LHCb collaboration, Test of lepton universality with B 0 K ∗0+ decays, JHEP 08 (2017) 055 [arXiv:1705.05802] [INSPIRE].
  23. [23]
    T. Blake, M. Gersabeck, L. Hofer, S. Jäger, Z. Liu and R. Zwicky, Round table: Flavour anomalies in b s+ processes, EPJ Web Conf. 137 (2017) 01001 [arXiv:1703.10005] [INSPIRE].CrossRefGoogle Scholar
  24. [24]
    F. Beaujean, C. Bobeth and D. van Dyk, Comprehensive Bayesian analysis of rare (semi)leptonic and radiative B decays, Eur. Phys. J. C 74 (2014) 2897 [Erratum ibid. C 74 (2014) 3179] [arXiv:1310.2478] [INSPIRE].
  25. [25]
    S. Descotes-Genon, L. Hofer, J. Matias and J. Virto, Global analysis of b sℓℓ anomalies, JHEP 06 (2016) 092 [arXiv:1510.04239] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    T. Hurth, F. Mahmoudi and S. Neshatpour, On the anomalies in the latest LHCb data, Nucl. Phys. B 909 (2016) 737 [arXiv:1603.00865] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    T. Hurth, F. Mahmoudi, D. Martinez Santos and S. Neshatpour, On lepton non-universality in exclusive b sℓℓ decays, arXiv:1705.06274 [INSPIRE].
  28. [28]
    W. Altmannshofer and D.M. Straub, New physics in b s transitions after LHC run 1, Eur. Phys. J. C 75 (2015) 382 [arXiv:1411.3161] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    W. Altmannshofer, C. Niehoff, P. Stangl and D.M. Straub, Status of the B K μ + μ anomaly after Moriond 2017, Eur. Phys. J. C 77 (2017) 377 [arXiv:1703.09189] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    B. Capdevila, A. Crivellin, S. Descotes-Genon, J. Matias and J. Virto, Patterns of New Physics in b s+ transitions in the light of recent data, arXiv:1704.05340 [INSPIRE].
  31. [31]
    L.-S. Geng, B. Grinstein, S. Jäger, J. Martin Camalich, X.-L. Ren and R.-X. Shi, Towards the discovery of new physics with lepton-universality ratios of b sℓℓ decays, Phys. Rev. D 96 (2017) 093006 [arXiv:1704.05446] [INSPIRE].ADSGoogle Scholar
  32. [32]
    R. Gauld, F. Goertz and U. Haisch, On minimal Zexplanations of the B K μ + μ anomaly, Phys. Rev. D 89 (2014) 015005 [arXiv:1308.1959] [INSPIRE].ADSGoogle Scholar
  33. [33]
    A.J. Buras and J. Girrbach, Left-handed Zand Z FCNC quark couplings facing new b + μ data, JHEP 12 (2013) 009 [arXiv:1309.2466] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    W. Altmannshofer and D.M. Straub, New Physics in B K μμ?, Eur. Phys. J. C 73 (2013) 2646 [arXiv:1308.1501] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    W. Altmannshofer, S. Gori, M. Pospelov and I. Yavin, Quark flavor transitions in L μ L τ models, Phys. Rev. D 89 (2014) 095033 [arXiv:1403.1269] [INSPIRE].ADSGoogle Scholar
  36. [36]
    A. Crivellin, G. D’Ambrosio and J. Heeck, Explaining h μ ± τ , B K μ + μ and B + μ /B Ke + e in a two-Higgs-doublet model with gauged L μ L τ, Phys. Rev. Lett. 114 (2015) 151801 [arXiv:1501.00993] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    D. Aristizabal Sierra, F. Staub and A. Vicente, Shedding light on the b s anomalies with a dark sector, Phys. Rev. D 92 (2015) 015001 [arXiv:1503.06077] [INSPIRE].ADSGoogle Scholar
  38. [38]
    A. Crivellin, G. D’Ambrosio and J. Heeck, Addressing the LHC flavor anomalies with horizontal gauge symmetries, Phys. Rev. D 91 (2015) 075006 [arXiv:1503.03477] [INSPIRE].ADSGoogle Scholar
  39. [39]
    A. Celis, J. Fuentes-Martin, M. Jung and H. Serodio, Family nonuniversal Z models with protected flavor-changing interactions, Phys. Rev. D 92 (2015) 015007 [arXiv:1505.03079] [INSPIRE].ADSGoogle Scholar
  40. [40]
    A. Falkowski, M. Nardecchia and R. Ziegler, Lepton Flavor Non-Universality in B-meson Decays from a U(2) Flavor Model, JHEP 11 (2015) 173 [arXiv:1509.01249] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    C.-W. Chiang, X.-G. He and G. Valencia, Zmodel for \( b\to s\ell \overline{\ell} \) flavor anomalies, Phys. Rev. D 93 (2016) 074003 [arXiv:1601.07328] [INSPIRE].ADSGoogle Scholar
  42. [42]
    A. Crivellin, J. Fuentes-Martin, A. Greljo and G. Isidori, Lepton Flavor Non-Universality in B decays from Dynamical Yukawas, Phys. Lett. B 766 (2017) 77 [arXiv:1611.02703] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    D. Bhatia, S. Chakraborty and A. Dighe, Neutrino mixing and R K anomaly in U(1) X models: a bottom-up approach, JHEP 03 (2017) 117 [arXiv:1701.05825] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    J.F. Kamenik, Y. Soreq and J. Zupan, Lepton flavor universality violation without new sources of quark flavor violation, arXiv:1704.06005 [INSPIRE].
  45. [45]
    J. Ellis, M. Fairbairn and P. Tunney, Anomaly-Free Models for Flavour Anomalies, arXiv:1705.03447 [INSPIRE].
  46. [46]
    C. Bonilla, T. Modak, R. Srivastava and J.W.F. Valle, \( \mathrm{U}{(1)}_{B_3}{{}_{-}}_{3{L}_{\mu }} \) gauge symmetry as the simplest description of b s anomalies, arXiv:1705.00915 [INSPIRE].
  47. [47]
    G. Hiller and M. Schmaltz, R K and future b sℓℓ physics beyond the standard model opportunities, Phys. Rev. D 90 (2014) 054014 [arXiv:1408.1627] [INSPIRE].
  48. [48]
    S. Biswas, D. Chowdhury, S. Han and S.J. Lee, Explaining the lepton non-universality at the LHCb and CMS within a unified framework, JHEP 02 (2015) 142 [arXiv:1409.0882] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    A.J. Buras, J. Girrbach-Noe, C. Niehoff and D.M. Straub, \( B\to {K}^{\left(\ast \right)}\nu \overline{\nu} \) decays in the Standard Model and beyond, JHEP 02 (2015) 184 [arXiv:1409.4557] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    B. Gripaios, M. Nardecchia and S.A. Renner, Composite leptoquarks and anomalies in B-meson decays, JHEP 05 (2015) 006 [arXiv:1412.1791] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    M. Bauer and M. Neubert, Minimal Leptoquark Explanation for the \( {R_D}_{{}^{\left(\ast \right)}} \) , R K and (g 2)g Anomalies, Phys. Rev. Lett. 116 (2016) 141802 [arXiv:1511.01900] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    I. de Medeiros Varzielas and G. Hiller, Clues for flavor from rare lepton and quark decays, JHEP 06 (2015) 072 [arXiv:1503.01084] [INSPIRE].CrossRefGoogle Scholar
  53. [53]
    D. Bečirević and O. Sumensari, A leptoquark model to accommodate R Kexp < R KSM and \( {R}_{K^{\ast}}^{\exp }<{R}_{K^{\ast}}^{\mathrm{SM}} \), JHEP 08 (2017) 104 [arXiv:1704.05835] [INSPIRE].
  54. [54]
    R. Barbieri, G. Isidori, A. Pattori and F. Senia, Anomalies in B-decays and U(2) flavour symmetry, Eur. Phys. J. C 76 (2016) 67 [arXiv:1512.01560] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    S. Fajfer and N. Košnik, Vector leptoquark resolution of R K and \( {R_D}_{{}^{\left(\ast \right)}} \) puzzles, Phys. Lett. B 755 (2016) 270 [arXiv:1511.06024] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    R. Alonso, B. Grinstein and J. Martin Camalich, Lepton universality violation and lepton flavor conservation in B-meson decays, JHEP 10 (2015) 184 [arXiv:1505.05164] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    L. Calibbi, A. Crivellin and T. Ota, Effective Field Theory Approach to b sℓℓ() , \( B\to {K}^{\left(\ast \right)}\nu \overline{\nu} \) and B → D (∗) τν with Third Generation Couplings, Phys. Rev. Lett. 115 (2015) 181801 [arXiv:1506.02661] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    D. Bečirević, N. Košnik, O. Sumensari and R. Zukanovich Funchal, Palatable Leptoquark Scenarios for Lepton Flavor Violation in Exclusive b s12 modes, JHEP 11 (2016) 035 [arXiv:1608.07583] [INSPIRE].Google Scholar
  59. [59]
    G. Hiller, D. Loose and K. Schönwald, Leptoquark Flavor Patterns & B Decay Anomalies, JHEP 12 (2016) 027 [arXiv:1609.08895] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    Y. Cai, J. Gargalionis, M.A. Schmidt and R.R. Volkas, Reconsidering the One Leptoquark solution: flavor anomalies and neutrino mass, JHEP 10 (2017) 047 [arXiv:1704.05849] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    B. Chauhan, B. Kindra and A. Narang, A leptoquark explanation for (g 2)μ , R K , \( {R_K}_{{}^{\ast }} \) and, IceCube PeV events, arXiv:1706.04598 [INSPIRE].
  62. [62]
    S. Jäger and J. Martin Camalich, On B V ℓℓ at small dilepton invariant mass, power corrections and new physics, JHEP 05 (2013) 043 [arXiv:1212.2263] [INSPIRE].CrossRefGoogle Scholar
  63. [63]
    J. Lyon and R. Zwicky, Resonances gone topsy turvy - the charm of QCD or new physics in b s+ ?, arXiv:1406.0566[INSPIRE].
  64. [64]
    M. Ciuchini et al., B K + decays at large recoil in the Standard Model: a theoretical reappraisal, JHEP 06 (2016) 116 [arXiv:1512.07157] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    V.G. Chobanova, T. Hurth, F. Mahmoudi, D. Martinez Santos and S. Neshatpour, Large hadronic power corrections or new physics in the rare decay B K μ + μ ?, JHEP 07 (2017) 025 [arXiv:1702.02234] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    U. Egede, T. Hurth, J. Matias, M. Ramon and W. Reece, New observables in the decay mode \( {\overline{B}}_d\to {{\overline{K}}^{\ast}}^0{l}^{+}{l}^{-} \), JHEP 11 (2008) 032 [arXiv:0807.2589] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    U. Egede, T. Hurth, J. Matias, M. Ramon and W. Reece, Symmetries in the angular distribution of exclusive semileptonic B decays, PoS(ICHEP 2010)245 [arXiv:1012.4603] [INSPIRE].
  68. [68]
    U. Egede, M. Patel and K.A. Petridis, Method for an unbinned measurement of the q 2 dependent decay amplitudes of \( {\overline{B}}^0\to {\overline{K}}^{\ast 0}{\mu}^{+}{\mu}^{-} \) decays, JHEP 06 (2015) 084 [arXiv:1504.00574] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    M. Beneke, T. Feldmann and D. Seidel, Systematic approach to exclusive B V l + l , V γ decays, Nucl. Phys. B 612 (2001) 25 [hep-ph/0106067] [INSPIRE].
  70. [70]
    B. Grinstein and D. Pirjol, Exclusive rare B K + decays at low recoil: Controlling the long-distance effects, Phys. Rev. D 70 (2004) 114005 [hep-ph/0404250] [INSPIRE].
  71. [71]
    C. Bobeth, G. Hiller and D. van Dyk, The Benefits of \( \overline{B}\to {\overline{K}}^{*}{\ell}^{+}{\ell}^{-} \) Decays at Low Recoil, JHEP 07 (2010) 098 [arXiv:1006.5013] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  72. [72]
    D. van Dyk et al., EOS — A HEP program for Flavor Observables, (2016),
  73. [73]
    F. Mahmoudi, SuperIso: A program for calculating the isospin asymmetry of B K γ in the MSSM, Comput. Phys. Commun. 178 (2008) 745 [arXiv:0710.2067] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  74. [74]
    F. Mahmoudi, SuperIso v2.3: A program for calculating flavor physics observables in Supersymmetry, Comput. Phys. Commun. 180 (2009) 1579 [arXiv:0808.3144] [INSPIRE].
  75. [75]
    F. Mahmoudi, SuperIso v3.0, flavor physics observables calculations: Extension to NMSSM, Comput. Phys. Commun. 180 (2009) 1718 [INSPIRE].
  76. [76]
    D. Straub et al., flav-io/flavio, (July 2017). 10.5281/zenodo.594587.
  77. [77]
    F. Krüger, L.M. Sehgal, N. Sinha and R. Sinha, Angular distribution and CP asymmetries in the decays \( \overline{B}\to {K}^{-}{\pi}^{+}{e}^{-}{e}^{+} \) and \( \overline{B}\to {\pi}^{-}{\pi}^{+}{e}^{-}{e}^{+} \), Phys. Rev. D 61 (2000)114028 [Erratum ibid. D 63 (2001) 019901] [hep-ph/9907386] [INSPIRE].
  78. [78]
    W. Altmannshofer, P. Ball, A. Bharucha, A.J. Buras, D.M. Straub and M. Wick, Symmetries and Asymmetries of B K μ + μ Decays in the Standard Model and Beyond, JHEP 01 (2009) 019 [arXiv:0811.1214] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    F. Krüger and J. Matias, Probing new physics via the transverse amplitudes of B 0 K ∗0( K π +)l + l at large recoil, Phys. Rev. D 71 (2005) 094009 [hep-ph/0502060] [INSPIRE].
  80. [80]
    S. Descotes-Genon, J. Matias, M. Ramon and J. Virto, Implications from clean observables for the binned analysis of B Kμ + μ at large recoil, JHEP 01 (2013) 048 [arXiv:1207.2753] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    P. Ball and R. Zwicky, B d,s ρ, ω, K , ϕ decay form-factors from light-cone sum rules revisited, Phys. Rev. D 71 (2005) 014029 [hep-ph/0412079] [INSPIRE].
  82. [82]
    A. Khodjamirian, T. Mannel, A.A. Pivovarov and Y.M. Wang, Charm-loop effect in B K (∗)+ and B K γ, JHEP 09 (2010) 089 [arXiv:1006.4945] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  83. [83]
    D. Becirevic and A. Tayduganov, Impact of B → K 0 + on the New Physics search in B K + decay, Nucl. Phys. B 868 (2013) 368 [arXiv:1207.4004] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  84. [84]
    C.-D. Lu and W. Wang, Analysis of B → K J(→)μ + μ in the higher kaon resonance region, Phys. Rev. D 85 (2012) 034014 [arXiv:1111.1513] [INSPIRE].ADSMathSciNetGoogle Scholar
  85. [85]
    S. Descotes-Genon and B. Moussallam, The K ∗0(800) scalar resonance from Roy-Steiner representations of πK scattering, Eur. Phys. J. C 48 (2006) 553 [hep-ph/0607133] [INSPIRE].
  86. [86]
    UTfit collaboration, M. Bona et al., The Unitarity Triangle Fit in the Standard Model and Hadronic Parameters from Lattice QCD: A Reappraisal after the Measurements of Δm s and ℬ(B → τν τ), JHEP 10 (2006) 081 [hep-ph/0606167] [INSPIRE].
  87. [87]
    Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].
  88. [88]
    C. Bobeth, M. Chrzaszcz, D. van Dyk and J. Virto, Long-distance effects in B K ℓℓ from Analyticity, arXiv:1707.07305 [INSPIRE].
  89. [89]
    M. Pivk and F.R. Le Diberder, SPlot: A statistical tool to unfold data distributions, Nucl. Instrum. Meth. A 555 (2005) 356 [physics/0402083] [INSPIRE].

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.PRISMA Cluster of Excellence and Institute for Physics (THEP)Johannes Gutenberg UniversityMainzGermany
  2. 2.I. Physikalisches Institut BAachenGermany
  3. 3.Univ Lyon, Univ Lyon 1, CNRS/IN2P3, Institut de Physique Nucléaire de Lyon UMR5822VilleurbanneFrance
  4. 4.CERN, Theoretical Physics DepartmentGeneva 23Switzerland
  5. 5.Institut Universitaire de FranceParisFrance

Personalised recommendations