Journal of High Energy Physics

, 2017:162 | Cite as

Slepton non-universality in the flavor-effective MSSM

  • M. Luisa López-Ibáñez
  • Aurora Melis
  • M. Jay Pérez
  • Oscar VivesEmail author
Open Access
Regular Article - Theoretical Physics


Supersymmetric theories supplemented by an underlying flavor-symmetry \( {\mathcal{G}}_f \) provide a rich playground for model building aimed at explaining the flavor structure of the Standard Model. In the case where supersymmetry breaking is mediated by gravity, the soft-breaking Lagrangian typically exhibits large tree-level flavor violating effects, even if it stems from an ultraviolet flavor-conserving origin. Building on previous work, we continue our phenomenological analysis of these models with a particular emphasis on leptonic flavor observables. We consider three representative models which aim to explain the flavor structure of the lepton sector, with symmetry groups \( {\mathcal{G}}_f=\Delta (27) \), A4, and S3.


Quark Masses and SM Parameters Supersymmetric Standard Model Supersymmetry Breaking Supersymmetric Effective Theories 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    S.L. Glashow, J. Iliopoulos and L. Maiani, Weak interactions with lepton-hadron symmetry, Phys. Rev. D 2 (1970) 1285 [INSPIRE].ADSGoogle Scholar
  2. [2]
    K.S. Babu, TASI lectures on flavor physics, in Proceedings of Theoretical Advanced Study Institute in Elementary Particle Physics on the dawn of the LHC era (TASI 2008), (2010), pg. 49 [arXiv:0910.2948] [INSPIRE].
  3. [3]
    G. Altarelli and F. Feruglio, Discrete flavor symmetries and models of neutrino mixing, Rev. Mod. Phys. 82 (2010) 2701 [arXiv:1002.0211] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    D. Das, M.L. López-Ibáñez, M.J. Pérez and O. Vives, Effective theories of flavor and the nonuniversal MSSM, Phys. Rev. D 95 (2017) 035001 [arXiv:1607.06827] [INSPIRE].ADSGoogle Scholar
  5. [5]
    L. Calibbi, Z. Lalak, S. Pokorski and R. Ziegler, The messenger sector of SUSY flavour models and radiative breaking of flavour universality, JHEP 06 (2012) 018 [arXiv:1203.1489] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    S. Antusch, L. Calibbi, V. Maurer and M. Spinrath, From flavour to SUSY flavour models, Nucl. Phys. B 852 (2011) 108 [arXiv:1104.3040] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  7. [7]
    S.F. King, I.N.R. Peddie, G.G. Ross, L. Velasco-Sevilla and O. Vives, Kähler corrections and softly broken family symmetries, JHEP 07 (2005) 049 [hep-ph/0407012] [INSPIRE].
  8. [8]
    Particle Data Group collaboration, C. Patrignani et al., Review of particle physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  9. [9]
    A.M. Baldini et al., MEG upgrade proposal, arXiv:1301.7225 [INSPIRE].
  10. [10]
    T. Aushev et al., Physics at super B factory, arXiv:1002.5012 [INSPIRE].
  11. [11]
    A. Blondel et al., Research proposal for an experiment to search for the decay μeee, arXiv:1301.6113 [INSPIRE].
  12. [12]
    J.A. Casas and S. Dimopoulos, Stability bounds on flavor violating trilinear soft terms in the MSSM, Phys. Lett. B 387 (1996) 107 [hep-ph/9606237] [INSPIRE].
  13. [13]
    I. de Medeiros Varzielas, S.F. King and G.G. Ross, Neutrino tri-bi-maximal mixing from a non-Abelian discrete family symmetry, Phys. Lett. B 648 (2007) 201 [hep-ph/0607045] [INSPIRE].
  14. [14]
    I. de Medeiros Varzielas and G.G. Ross, SU(3) family symmetry and neutrino bi-tri-maximal mixing, Nucl. Phys. B 733 (2006) 31 [hep-ph/0507176] [INSPIRE].
  15. [15]
    I. de Medeiros Varzielas, G.G. Ross and J. Talbert, A unified model of quarks and leptons with a universal texture zero, arXiv:1710.01741 [INSPIRE].
  16. [16]
    Particle Data Group collaboration, C. Patrignani et al., Review of particle physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  17. [17]
    S. Antusch and V. Maurer, Running quark and lepton parameters at various scales, JHEP 11 (2013) 115 [arXiv:1306.6879] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    W. Porod and F. Staub, SPheno 3.1: extensions including flavour, CP-phases and models beyond the MSSM, Comput. Phys. Commun. 183 (2012) 2458 [arXiv:1104.1573] [INSPIRE].
  19. [19]
    W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e + e colliders, Comput. Phys. Commun. 153 (2003) 275 [hep-ph/0301101] [INSPIRE].
  20. [20]
    L.J. Hall, V.A. Kostelecky and S. Raby, New flavor violations in supergravity models, Nucl. Phys. B 267 (1986) 415 [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    F. Gabbiani and A. Masiero, FCNC in generalized supersymmetric theories, Nucl. Phys. B 322 (1989) 235 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    F. Gabbiani, E. Gabrielli, A. Masiero and L. Silvestrini, A complete analysis of FCNC and CP constraints in general SUSY extensions of the standard model, Nucl. Phys. B 477 (1996) 321 [hep-ph/9604387] [INSPIRE].
  23. [23]
    P. Paradisi, Constraints on SUSY lepton flavor violation by rare processes, JHEP 10 (2005) 006 [hep-ph/0505046] [INSPIRE].
  24. [24]
    M. Ciuchini, A. Masiero, P. Paradisi, L. Silvestrini, S.K. Vempati and O. Vives, Soft SUSY breaking grand unification: leptons versus quarks on the flavor playground, Nucl. Phys. B 783 (2007) 112 [hep-ph/0702144] [INSPIRE].
  25. [25]
    L. Calibbi, J. Jones-Perez and O. Vives, Electric dipole moments from flavoured CP-violation in SUSY, Phys. Rev. D 78 (2008) 075007 [arXiv:0804.4620] [INSPIRE].ADSGoogle Scholar
  26. [26]
    L. Calibbi, J. Jones-Perez, A. Masiero, J.-H. Park, W. Porod and O. Vives, FCNC and CP-violation observables in a SU(3)-flavoured MSSM, Nucl. Phys. B 831 (2010) 26 [arXiv:0907.4069] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  27. [27]
    G. Altarelli and F. Feruglio, Tri-bimaximal neutrino mixing, A 4 and the modular symmetry, Nucl. Phys. B 741 (2006) 215 [hep-ph/0512103] [INSPIRE].
  28. [28]
    G. Altarelli and D. Meloni, A simplest A 4 model for tri-bimaximal neutrino mixing, J. Phys. G 36 (2009) 085005 [arXiv:0905.0620] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    G. Altarelli and F. Feruglio, Tri-bimaximal neutrino mixing from discrete symmetry in extra dimensions, Nucl. Phys. B 720 (2005) 64 [hep-ph/0504165] [INSPIRE].
  30. [30]
    E. Ma and G. Rajasekaran, Softly broken A 4 symmetry for nearly degenerate neutrino masses, Phys. Rev. D 64 (2001) 113012 [hep-ph/0106291] [INSPIRE].
  31. [31]
    K.S. Babu, E. Ma and J.W.F. Valle, Underlying A 4 symmetry for the neutrino mass matrix and the quark mixing matrix, Phys. Lett. B 552 (2003) 207 [hep-ph/0206292] [INSPIRE].
  32. [32]
    E. Ma, A 4 symmetry and neutrinos with very different masses, Phys. Rev. D 70 (2004) 031901 [hep-ph/0404199] [INSPIRE].
  33. [33]
    X.-G. He, Y.-Y. Keum and R.R. Volkas, A 4 flavor symmetry breaking scheme for understanding quark and neutrino mixing angles, JHEP 04 (2006) 039 [hep-ph/0601001] [INSPIRE].
  34. [34]
    K.S. Babu and X.-G. He, Model of geometric neutrino mixing, hep-ph/0507217 [INSPIRE].
  35. [35]
    A. Zee, Obtaining the neutrino mixing matrix with the tetrahedral group, Phys. Lett. B 630 (2005) 58 [hep-ph/0508278] [INSPIRE].
  36. [36]
    E. Ma, Tribimaximal neutrino mixing from a supersymmetric model with A 4 family symmetry, Phys. Rev. D 73 (2006) 057304 [hep-ph/0511133] [INSPIRE].
  37. [37]
    S.F. King and M. Malinsky, A 4 family symmetry and quark-lepton unification, Phys. Lett. B 645 (2007) 351 [hep-ph/0610250] [INSPIRE].
  38. [38]
    G. Altarelli, F. Feruglio and Y. Lin, Tri-bimaximal neutrino mixing from orbifolding, Nucl. Phys. B 775 (2007) 31 [hep-ph/0610165] [INSPIRE].
  39. [39]
    M. Hirsch, A.S. Joshipura, S. Kaneko and J.W.F. Valle, Predictive flavour symmetries of the neutrino mass matrix, Phys. Rev. Lett. 99 (2007) 151802 [hep-ph/0703046] [INSPIRE].
  40. [40]
    F. Bazzocchi, S. Kaneko and S. Morisi, A SUSY A 4 model for fermion masses and mixings, JHEP 03 (2008) 063 [arXiv:0707.3032] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    M. Honda and M. Tanimoto, Deviation from tri-bimaximal neutrino mixing in A 4 flavor symmetry, Prog. Theor. Phys. 119 (2008) 583 [arXiv:0801.0181] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  42. [42]
    F. Bazzocchi, S. Morisi, M. Picariello and E. Torrente-Lujan, Embedding A 4 into SU(3) × U(1) flavor symmetry: large neutrino mixing and fermion mass hierarchy in SO(10) GUT, J. Phys. G 36 (2009) 015002 [arXiv:0802.1693] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    M. Hirsch, S. Morisi and J.W.F. Valle, Tri-bimaximal neutrino mixing and neutrinoless double beta decay, Phys. Rev. D 78 (2008) 093007 [arXiv:0804.1521] [INSPIRE].ADSGoogle Scholar
  44. [44]
    Y. Lin, A predictive A 4 model, charged lepton hierarchy and tri-bimaximal sum rule, Nucl. Phys. B 813 (2009) 91 [arXiv:0804.2867] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  45. [45]
    C. Csáki, C. Delaunay, C. Grojean and Y. Grossman, A model of lepton masses from a warped extra dimension, JHEP 10 (2008) 055 [arXiv:0806.0356] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    F. Feruglio, C. Hagedorn, Y. Lin and L. Merlo, Lepton flavour violation in models with A 4 flavour symmetry, Nucl. Phys. B 809 (2009) 218 [arXiv:0807.3160] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  47. [47]
    S. Morisi, M. Picariello and E. Torrente-Lujan, Model for fermion masses and lepton mixing in SO(10) × A 4, Phys. Rev. D 75 (2007) 075015 [hep-ph/0702034] [INSPIRE].
  48. [48]
    M. Hirsch, A. Villanova del Moral, J.W.F. Valle and E. Ma, Predicting neutrinoless double beta decay, Phys. Rev. D 72 (2005) 091301 [Erratum ibid. D 72 (2005) 119904] [hep-ph/0507148] [INSPIRE].
  49. [49]
    M. Hirsch, J.C. Romao, S. Skadhauge, J.W.F. Valle and A. Villanova del Moral, Phenomenological tests of supersymmetric A 4 family symmetry model of neutrino mass, Phys. Rev. D 69 (2004) 093006 [hep-ph/0312265] [INSPIRE].
  50. [50]
    M.-C. Chen and S.F. King, A 4 see-saw models and form dominance, JHEP 06 (2009) 072 [arXiv:0903.0125] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    M. Hirsch, J.C. Romao, S. Skadhauge, J.W.F. Valle and A. Villanova del Moral, Degenerate neutrinos from a supersymmetric A 4 model, hep-ph/0312244 [INSPIRE].
  52. [52]
    Double CHOOZ collaboration, Y. Abe et al., Improved measurements of the neutrino mixing angle θ 13 with the Double CHOOZ detector, JHEP 10 (2014) 086 [Erratum ibid. 02 (2015) 074] [arXiv:1406.7763] [INSPIRE].
  53. [53]
    Daya Bay collaboration, F.P. An et al., New measurement of antineutrino oscillation with the full detector configuration at Daya Bay, Phys. Rev. Lett. 115 (2015) 111802 [arXiv:1505.03456] [INSPIRE].
  54. [54]
    RENO collaboration, J.H. Choi et al., Observation of energy and baseline dependent reactor antineutrino disappearance in the RENO experiment, Phys. Rev. Lett. 116 (2016) 211801 [arXiv:1511.05849] [INSPIRE].
  55. [55]
    Y. Lin, Tri-bimaximal neutrino mixing from A 4 and θ 13θ C, Nucl. Phys. B 824 (2010) 95 [arXiv:0905.3534] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    I.K. Cooper, S.F. King and C. Luhn, A 4 × SU(5) SUSY GUT of flavour with trimaximal neutrino mixing, JHEP 06 (2012) 130 [arXiv:1203.1324] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    D. Hernandez and A. Yu. Smirnov, Lepton mixing and discrete symmetries, Phys. Rev. D 86 (2012) 053014 [arXiv:1204.0445] [INSPIRE].ADSGoogle Scholar
  58. [58]
    S.F. King and C. Luhn, Trimaximal neutrino mixing from vacuum alignment in A 4 and S 4 models, JHEP 09 (2011) 042 [arXiv:1107.5332] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  59. [59]
    Y.-J. Zheng and B.-Q. Ma, Re-evaluation of neutrino mixing pattern according to latest T2K result, Eur. Phys. J. Plus 127 (2012) 7 [arXiv:1106.4040] [INSPIRE].CrossRefGoogle Scholar
  60. [60]
    E. Ma and D. Wegman, Nonzero θ 13 for neutrino mixing in the context of A 4 symmetry, Phys. Rev. Lett. 107 (2011) 061803 [arXiv:1106.4269] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    W. Rodejohann, H. Zhang and S. Zhou, Systematic search for successful lepton mixing patterns with nonzero θ 13, Nucl. Phys. B 855 (2012) 592 [arXiv:1107.3970] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  62. [62]
    Y.H. Ahn, H.-Y. Cheng and S. Oh, An extension of tribimaximal lepton mixing, Phys. Rev. D 84 (2011) 113007 [arXiv:1107.4549] [INSPIRE].ADSGoogle Scholar
  63. [63]
    S. Kumar, Implications of a class of neutrino mass matrices with texture zeros for non-zero θ 13, Phys. Rev. D 84 (2011) 077301 [arXiv:1108.2137] [INSPIRE].ADSGoogle Scholar
  64. [64]
    S. Gupta, A.S. Joshipura and K.M. Patel, Minimal extension of tri-bimaximal mixing and generalized Z 2 × Z 2 symmetries, Phys. Rev. D 85 (2012) 031903 [arXiv:1112.6113] [INSPIRE].ADSGoogle Scholar
  65. [65]
    G.C. Branco, R. Gonzalez Felipe, F.R. Joaquim and H. Serodio, Spontaneous leptonic CP-violation and nonzero θ 13, Phys. Rev. D 86 (2012) 076008 [arXiv:1203.2646] [INSPIRE].ADSGoogle Scholar
  66. [66]
    Y.H. Ahn and S.K. Kang, Non-zero θ 13 and CP-violation in a model with A 4 flavor symmetry, Phys. Rev. D 86 (2012) 093003 [arXiv:1203.4185] [INSPIRE].ADSGoogle Scholar
  67. [67]
    G. Altarelli, F. Feruglio and C. Hagedorn, A SUSY SU(5) grand unified model of tri-bimaximal mixing from A 4, JHEP 03 (2008) 052 [arXiv:0802.0090] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    N. Haba and K. Yoshioka, Discrete flavor symmetry, dynamical mass textures and grand unification, Nucl. Phys. B 739 (2006) 254 [hep-ph/0511108] [INSPIRE].
  69. [69]
    S. Morisi and M. Picariello, The flavor physics in unified gauge theory from an S 3 × P discrete symmetry, Int. J. Theor. Phys. 45 (2006) 1267 [hep-ph/0505113] [INSPIRE].
  70. [70]
    S.-L. Chen, M. Frigerio and E. Ma, Large neutrino mixing and normal mass hierarchy: a discrete understanding, Phys. Rev. D 70 (2004) 073008 [Erratum ibid. D 70 (2004) 079905] [hep-ph/0404084] [INSPIRE].
  71. [71]
    Z.-Z. Xing, D. Yang and S. Zhou, Broken S 3 flavor symmetry of leptons and quarks: mass spectra and flavor mixing patterns, Phys. Lett. B 690 (2010) 304 [arXiv:1004.4234] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    W. Grimus and L. Lavoura, S 3 × Z 2 model for neutrino mass matrices, JHEP 08 (2005) 013 [hep-ph/0504153] [INSPIRE].
  73. [73]
    R.N. Mohapatra, S. Nasri and H.-B. Yu, S 3 symmetry and tri-bimaximal mixing, Phys. Lett. B 639 (2006) 318 [hep-ph/0605020] [INSPIRE].
  74. [74]
    F. Feruglio and Y. Lin, Fermion mass hierarchies and flavour mixing from a minimal discrete symmetry, Nucl. Phys. B 800 (2008) 77 [arXiv:0712.1528] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    E. Ma, S 3 × Z 3 model of lepton mass matrices, Phys. Rev. D 44 (1991) 587 [INSPIRE].ADSGoogle Scholar
  76. [76]
    D. Meloni, S 3 as a flavour symmetry for quarks and leptons after the Daya Bay result on θ 13, JHEP 05 (2012) 124 [arXiv:1203.3126] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    D. Binosi and L. Theussl, JaxoDraw: a graphical user interface for drawing Feynman diagrams, Comput. Phys. Commun. 161 (2004) 76 [hep-ph/0309015] [INSPIRE].
  78. [78]
    D. Binosi, J. Collins, C. Kaufhold and L. Theussl, JaxoDraw: a graphical user interface for drawing Feynman diagrams. Version 2.0 release notes, Comput. Phys. Commun. 180 (2009) 1709 [arXiv:0811.4113] [INSPIRE].

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Departament de Física Tèorica, Universitat de València and IFIC, Universitat de València-CSICBurjassot (València)Spain
  2. 2.Valencia State College, Osceola CampusKissimmeeU.S.A.

Personalised recommendations