Advertisement

Journal of High Energy Physics

, 2017:161 | Cite as

Onset of hydrodynamics for a quark-gluon plasma from the evolution of moments of distribution functions

  • Jean-Paul Blaizot
  • Li Yan
Open Access
Regular Article - Theoretical Physics

Abstract

The pre-equilibrium evolution of a quark-gluon plasma produced in a heavy-ion collision is studied in the framework of kinetic theory. We discuss the approach to local thermal equilibrium, and the onset of hydrodynamics, in terms of a particular set of moments of the distribution function. These moments quantify the momentum anisotropies to a finer degree than the commonly used ratio of longitudinal to transverse pressures. They are found to be in direct correspondence with viscous corrections of hydrodynamics, and provide therefore an alternative measure of these corrections in terms of the distortion of the momentum distribution. As an application, we study the evolution of these moments by solving the Boltzmann equation for a boost invariant expanding system, first analytically in the relaxation time approximation, and then numerically for a quark-gluon plasma with a collision kernel given by leading order 2 ↔ 2 QCD matrix elements in the small angle approximation.

Keywords

Heavy Ion Phenomenology Phenomenological Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    U. Heinz and R. Snellings, Collective flow and viscosity in relativistic heavy-ion collisions, Ann. Rev. Nucl. Part. Sci. 63 (2013) 123 [arXiv:1301.2826] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    T. Epelbaum and F. Gelis, Pressure isotropization in high energy heavy ion collisions, Phys. Rev. Lett. 111 (2013) 232301 [arXiv:1307.2214] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    J. Berges, K. Boguslavski, S. Schlichting and R. Venugopalan, Universal attractor in a highly occupied non-Abelian plasma, Phys. Rev. D 89 (2014) 114007 [arXiv:1311.3005] [INSPIRE].ADSGoogle Scholar
  4. [4]
    A.H. Mueller and D.T. Son, On the Equivalence between the Boltzmann equation and classical field theory at large occupation numbers, Phys. Lett. B 582 (2004) 279 [hep-ph/0212198] [INSPIRE].
  5. [5]
    A. Kurkela and G.D. Moore, Thermalization in Weakly Coupled Nonabelian Plasmas, JHEP 12 (2011) 044 [arXiv:1107.5050] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  6. [6]
    A. Kurkela and E. Lu, Approach to Equilibrium in Weakly Coupled Non-Abelian Plasmas, Phys. Rev. Lett. 113 (2014) 182301 [arXiv:1405.6318] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    J.-P. Blaizot, J. Liao and L. McLerran, Gluon Transport Equation in the Small Angle Approximation and the Onset of Bose-Einstein Condensation, Nucl. Phys. A 920 (2013) 58 [arXiv:1305.2119] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    J.-P. Blaizot, B. Wu and L. Yan, Quark production, Bose-Einstein condensates and thermalization of the quark-gluon plasma, Nucl. Phys. A 930 (2014) 139 [arXiv:1402.5049] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    Z. Xu, K. Zhou, P. Zhuang and C. Greiner, Thermalization of gluons with Bose-Einstein condensation, Phys. Rev. Lett. 114 (2015) 182301 [arXiv:1410.5616] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    A. Kurkela and Y. Zhu, Isotropization and hydrodynamization in weakly coupled heavy-ion collisions, Phys. Rev. Lett. 115 (2015) 182301 [arXiv:1506.06647] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    L. Keegan, A. Kurkela, P. Romatschke, W. van der Schee and Y. Zhu, Weak and strong coupling equilibration in nonabelian gauge theories, JHEP 04 (2016) 031 [arXiv:1512.05347] [INSPIRE].ADSGoogle Scholar
  12. [12]
    D. Bazow, G.S. Denicol, U. Heinz, M. Martinez and J. Noronha, Nonlinear dynamics from the relativistic Boltzmann equation in the Friedmann-Lemaître-Robertson-Walker spacetime, Phys. Rev. D 94 (2016) 125006 [arXiv:1607.05245] [INSPIRE].ADSGoogle Scholar
  13. [13]
    R. Baier, P. Romatschke, D.T. Son, A.O. Starinets and M.A. Stephanov, Relativistic viscous hydrodynamics, conformal invariance and holography, JHEP 04 (2008) 100 [arXiv:0712.2451] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    J.D. Bjorken, Highly Relativistic Nucleus-Nucleus Collisions: The Central Rapidity Region, Phys. Rev. D 27 (1983) 140 [INSPIRE].ADSGoogle Scholar
  15. [15]
    R. Baier, A.H. Mueller, D. Schiff and D.T. Son, “Bottom up” thermalization in heavy ion collisions, Phys. Lett. B 502 (2001) 51 [hep-ph/0009237] [INSPIRE].
  16. [16]
    N. Tanji and R. Venugopalan, Effective kinetic description of the expanding overoccupied Glasma, Phys. Rev. D 95 (2017) 094009 [arXiv:1703.01372] [INSPIRE].ADSGoogle Scholar
  17. [17]
    M.P. Heller, R.A. Janik and P. Witaszczyk, The characteristics of thermalization of boost-invariant plasma from holography, Phys. Rev. Lett. 108 (2012) 201602 [arXiv:1103.3452] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    D. Teaney and L. Yan, Second order viscous corrections to the harmonic spectrum in heavy ion collisions, Phys. Rev. C 89 (2014) 014901 [arXiv:1304.3753] [INSPIRE].ADSGoogle Scholar
  19. [19]
    L. Yan, Anisotropic Flow and Viscous Hydrodynamics, J. Phys. Conf. Ser. 389 (2012) 012014 [arXiv:1208.3011] [INSPIRE].CrossRefGoogle Scholar
  20. [20]
    K. Dusling, G.D. Moore and D. Teaney, Radiative energy loss and v 2 spectra for viscous hydrodynamics, Phys. Rev. C 81 (2010) 034907 [arXiv:0909.0754] [INSPIRE].ADSGoogle Scholar
  21. [21]
    F. Gelis, E. Iancu, J. Jalilian-Marian and R. Venugopalan, The Color Glass Condensate, Ann. Rev. Nucl. Part. Sci. 60 (2010) 463 [arXiv:1002.0333] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    P.B. Arnold, C. Dogan and G.D. Moore, The Bulk Viscosity of High-Temperature QCD, Phys. Rev. D 74 (2006) 085021 [hep-ph/0608012] [INSPIRE].
  23. [23]
    J.-P. Blaizot, J. Liao and Y. Mehtar-Tani, The thermalization of soft modes in non-expanding isotropic quark gluon plasmas, Nucl. Phys. A 961 (2017) 37 [arXiv:1609.02580] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    G. Baym, Thermal equilibration in ultra-relativistic heavy-ion collisions, Phys. Lett. B 138 (1984) 18 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    W. Florkowski and R. Ryblewski, Separation of elastic and inelastic processes in the relaxation-time approximation for the collision integral, Phys. Rev. C 93 (2016) 064903 [arXiv:1603.01704] [INSPIRE].ADSGoogle Scholar
  26. [26]
    M.A. York and G.D. Moore, Second order hydrodynamic coefficients from kinetic theory, Phys. Rev. D 79 (2009) 054011 [arXiv:0811.0729] [INSPIRE].ADSGoogle Scholar
  27. [27]
    A. Jaiswal, Relativistic third-order dissipative fluid dynamics from kinetic theory, Phys. Rev. C 88 (2013) 021903 [arXiv:1305.3480] [INSPIRE].ADSGoogle Scholar
  28. [28]
    S. Grozdanov and N. Kaplis, Constructing higher-order hydrodynamics: The third order, Phys. Rev. D 93 (2016) 066012 [arXiv:1507.02461] [INSPIRE].ADSMathSciNetGoogle Scholar
  29. [29]
    H. Grad, Asymptotic theory of the boltzmann equation, Phys. Fluids 6 (1963) 147.ADSMathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    S.R. Groot, W.A. Leeuwen and C.G. van Weert, Relativistic kinetic theory: principles and applications, North-Holland Pub. Co. (1980).Google Scholar
  31. [31]
    M.P. Heller, A. Kurkela and M. Spalinski, Hydrodynamization and transient modes of expanding plasma in kinetic theory, arXiv:1609.04803 [INSPIRE].
  32. [32]
    G.S. Denicol and J. Noronha, Divergence of the Chapman-Enskog expansion in relativistic kinetic theory, arXiv:1608.07869 [INSPIRE].
  33. [33]
    G. Baym, H. Monien, C.J. Pethick and D.G. Ravenhall, Transverse Interactions and Transport in Relativistic quark-gluon and Electromagnetic Plasmas, Phys. Rev. Lett. 64 (1990) 1867 [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    P.B. Arnold, G.D. Moore and L.G. Yaffe, Transport coefficients in high temperature gauge theories. 1. Leading log results, JHEP 11 (2000) 001 [hep-ph/0010177] [INSPIRE].
  35. [35]
    M. Martinez and M. Strickland, Dissipative Dynamics of Highly Anisotropic Systems, Nucl. Phys. A 848 (2010) 183 [arXiv:1007.0889] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    W. Florkowski and R. Ryblewski, Highly-anisotropic and strongly-dissipative hydrodynamics for early stages of relativistic heavy-ion collisions, Phys. Rev. C 83 (2011) 034907 [arXiv:1007.0130] [INSPIRE].ADSGoogle Scholar
  37. [37]
    S. Hess, Tensors for physics, Undergraduate Lecture Notes in Physics, Springer, Cham Switzerland (2015).Google Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Institut de Physique ThéoriqueUniversité Paris Saclay, CEA, CNRSGif-sur-YvetteFrance
  2. 2.Physics DepartmentMcGill UniversityMontréalCanada

Personalised recommendations