Advertisement

Journal of High Energy Physics

, 2017:160 | Cite as

Amplitudes on plane waves from ambitwistor strings

  • Tim Adamo
  • Eduardo Casali
  • Lionel Mason
  • Stefan Nekovar
Open Access
Regular Article - Theoretical Physics

Abstract

In marked contrast to conventional string theory, ambitwistor strings remain solvable worldsheet theories when coupled to curved background fields. We use this fact to consider the quantization of ambitwistor strings on plane wave metric and plane wave gauge field backgrounds. In each case, the worldsheet model is anomaly free as a consequence of the background satisfying the field equations. We derive vertex operators (in both fixed and descended picture numbers) for gravitons and gluons on these backgrounds from the worldsheet CFT, and study the 3-point functions of these vertex operators on the Riemann sphere. These worldsheet correlation functions reproduce the known results for 3-point scattering amplitudes of gravitons and gluons in gravitational and gauge theoretic plane wave backgrounds, respectively.

Keywords

Scattering Amplitudes Superstrings and Heterotic Strings 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    L. Álvarez-Gaumé, D.Z. Freedman and S. Mukhi, The Background Field Method and the Ultraviolet Structure of the Supersymmetric Nonlinear σ-model, Annals Phys. 134 (1981) 85 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    E. Braaten, T.L. Curtright and C.K. Zachos, Torsion and Geometrostasis in Nonlinear σ-models, Nucl. Phys. B 260 (1985) 630 [Erratum ibid. B 266 (1986) 748] [INSPIRE].
  3. [3]
    E.S. Fradkin and A.A. Tseytlin, Quantum String Theory Effective Action, Nucl. Phys. B 261 (1985) 1 [Erratum ibid. B 269 (1986) 745] [INSPIRE].
  4. [4]
    C.G. Callan Jr., E.J. Martinec, M.J. Perry and D. Friedan, Strings in Background Fields, Nucl. Phys. B 262 (1985) 593 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    T. Banks, D. Nemeschansky and A. Sen, Dilaton Coupling and BRST Quantization of Bosonic Strings, Nucl. Phys. B 277 (1986) 67 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    A. Abouelsaood, C.G. Callan Jr., C.R. Nappi and S.A. Yost, Open Strings in Background Gauge Fields, Nucl. Phys. B 280 (1987) 599 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    D. Amati and C. Klimčík, Nonperturbative Computation of the Weyl Anomaly for a Class of Nontrivial Backgrounds, Phys. Lett. B 219 (1989) 443 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    G.T. Horowitz and A.R. Steif, Space-Time Singularities in String Theory, Phys. Rev. Lett. 64 (1990) 260 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    P.G.O. Freund and M.A. Rubin, Dynamics of Dimensional Reduction, Phys. Lett. B 97 (1980) 233 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    J.H. Schwarz, Covariant Field Equations of Chiral N = 2 D = 10 Supergravity, Nucl. Phys. B 226 (1983) 269 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    M. Blau, J.M. Figueroa-O’Farrill, C. Hull and G. Papadopoulos, A New maximally supersymmetric background of IIB superstring theory, JHEP 01 (2002) 047 [hep-th/0110242] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    M. Blau, J.M. Figueroa-O’Farrill, C. Hull and G. Papadopoulos, Penrose limits and maximal supersymmetry, Class. Quant. Grav. 19 (2002) L87 [hep-th/0201081] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    R.R. Metsaev and A.A. Tseytlin, Type IIB superstring action in AdS 5 × S 5 background, Nucl. Phys. B 533 (1998) 109 [hep-th/9805028] [INSPIRE].
  14. [14]
    R.R. Metsaev, Type IIB Green-Schwarz superstring in plane wave Ramond-Ramond background, Nucl. Phys. B 625 (2002) 70 [hep-th/0112044] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    R.R. Metsaev and A.A. Tseytlin, Exactly solvable model of superstring in Ramond-Ramond plane wave background, Phys. Rev. D 65 (2002) 126004 [hep-th/0202109] [INSPIRE].ADSGoogle Scholar
  16. [16]
    I. Bena, J. Polchinski and R. Roiban, Hidden symmetries of the AdS 5 × S 5 superstring, Phys. Rev. D 69 (2004) 046002 [hep-th/0305116] [INSPIRE].
  17. [17]
    N. Berkovits, Quantum consistency of the superstring in AdS 5 × S 5 background, JHEP 03 (2005) 041 [hep-th/0411170] [INSPIRE].
  18. [18]
    G. Arutyunov and S. Frolov, Superstrings on \( Ad{S}_4\times \mathbb{C}{\mathrm{\mathbb{P}}}^3 \) as a Coset σ-model, JHEP 09 (2008) 129 [arXiv:0806.4940] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    B. Stefanski Jr., Green-Schwarz action for Type IIA strings on AdS 4 × CP 3, Nucl. Phys. B 808 (2009) 80 [arXiv:0806.4948] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  20. [20]
    J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  22. [22]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    D.E. Berenstein, J.M. Maldacena and H.S. Nastase, Strings in flat space and pp waves from N = 4 super Yang-Mills, JHEP 04 (2002) 013 [hep-th/0202021] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    F. Delduc, M. Magro and B. Vicedo, An integrable deformation of the AdS 5 × S 5 superstring action, Phys. Rev. Lett. 112 (2014) 051601 [arXiv:1309.5850] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    G. Arutyunov, S. Frolov, B. Hoare, R. Roiban and A.A. Tseytlin, Scale invariance of the η-deformed AdS 5 × S 5 superstring, T-duality and modified type-II equations, Nucl. Phys. B 903 (2016) 262 [arXiv:1511.05795] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  26. [26]
    L. Wulff and A.A. Tseytlin, κ-symmetry of superstring σ-model and generalized 10d supergravity equations, JHEP 06 (2016) 174 [arXiv:1605.04884] [INSPIRE].
  27. [27]
    J.M. Maldacena and H. Ooguri, Strings in AdS 3 and the SL(2, ) WZW model. I: The Spectrum, J. Math. Phys. 42 (2001) 2929 [hep-th/0001053] [INSPIRE].
  28. [28]
    J.M. Maldacena, H. Ooguri and J. Son, Strings in AdS 3 and the SL(2, ) WZW model. II: Euclidean black hole, J. Math. Phys. 42 (2001) 2961 [hep-th/0005183] [INSPIRE].
  29. [29]
    J.M. Maldacena and H. Ooguri, Strings in AdS 3 and the SL(2, ) WZW model. III. Correlation functions, Phys. Rev. D 65 (2002) 106006 [hep-th/0111180] [INSPIRE].
  30. [30]
    O. Jofre and C.A. Núñez, Strings in plane wave backgrounds revisited, Phys. Rev. D 50 (1994) 5232 [hep-th/9311187] [INSPIRE].ADSGoogle Scholar
  31. [31]
    L. Dolan and E. Witten, Vertex operators for AdS 3 background with Ramond-Ramond flux, JHEP 11 (1999) 003 [hep-th/9910205] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  32. [32]
    N. Berkovits and O. Chandía, Superstring vertex operators in an AdS 5 × S 5 background, Nucl. Phys. B 596 (2001) 185 [hep-th/0009168] [INSPIRE].
  33. [33]
    O. Chandía, A. Mikhailov and B.C. Vallilo, A construction of integrated vertex operator in the pure spinor σ-model in AdS 5 × S 5, JHEP 11 (2013) 124 [arXiv:1306.0145] [INSPIRE].
  34. [34]
    J.A. Minahan, Holographic three-point functions for short operators, JHEP 07 (2012) 187 [arXiv:1206.3129] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    T. Bargheer, J.A. Minahan and R. Pereira, Computing Three-Point Functions for Short Operators, JHEP 03 (2014) 096 [arXiv:1311.7461] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    J.A. Minahan and R. Pereira, Three-point correlators from string amplitudes: Mixing and Regge spins, JHEP 04 (2015) 134 [arXiv:1410.4746] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  37. [37]
    N. Berkovits and T. Fleury, Harmonic Superspace from the AdS 5 × S 5 Pure Spinor Formalism, JHEP 03 (2013) 022 [arXiv:1212.3296] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  38. [38]
    T. Azevedo and N. Berkovits, Open-closed superstring amplitudes using vertex operators in AdS 5 × S 5, JHEP 02 (2015) 107 [arXiv:1412.5921] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  39. [39]
    N.R. Constable et al., PP wave string interactions from perturbative Yang-Mills theory, JHEP 07 (2002) 017 [hep-th/0205089] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    M. Spradlin and A. Volovich, Superstring interactions in a pp-wave background, Phys. Rev. D 66 (2002) 086004 [hep-th/0204146] [INSPIRE].ADSMathSciNetGoogle Scholar
  41. [41]
    L. Mason and D. Skinner, Ambitwistor strings and the scattering equations, JHEP 07 (2014) 048 [arXiv:1311.2564] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    K. Ohmori, Worldsheet Geometries of Ambitwistor String, JHEP 06 (2015) 075 [arXiv:1504.02675] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    E. Casali, Y. Geyer, L. Mason, R. Monteiro and K.A. Roehrig, New Ambitwistor String Theories, JHEP 11 (2015) 038 [arXiv:1506.08771] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  44. [44]
    T. Azevedo and O.T. Engelund, Ambitwistor formulations of R 2 gravity and (DF )2 gauge theories, arXiv:1707.02192 [INSPIRE].
  45. [45]
    F. Cachazo, S. He and E.Y. Yuan, Scattering of Massless Particles: Scalars, Gluons and Gravitons, JHEP 07 (2014) 033 [arXiv:1309.0885] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  46. [46]
    F. Cachazo, S. He and E.Y. Yuan, Scattering Equations and Matrices: From Einstein To Yang-Mills, DBI and NLSM, JHEP 07 (2015) 149 [arXiv:1412.3479] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  47. [47]
    T. Adamo, E. Casali and D. Skinner, Ambitwistor strings and the scattering equations at one loop, JHEP 04 (2014) 104 [arXiv:1312.3828] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    E. Casali and P. Tourkine, Infrared behaviour of the one-loop scattering equations and supergravity integrands, JHEP 04 (2015) 013 [arXiv:1412.3787] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  49. [49]
    T. Adamo and E. Casali, Scattering equations, supergravity integrands and pure spinors, JHEP 05 (2015) 120 [arXiv:1502.06826] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  50. [50]
    Y. Geyer, L. Mason, R. Monteiro and P. Tourkine, Loop Integrands for Scattering Amplitudes from the Riemann Sphere, Phys. Rev. Lett. 115 (2015) 121603 [arXiv:1507.00321] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    Y. Geyer, L. Mason, R. Monteiro and P. Tourkine, One-loop amplitudes on the Riemann sphere, JHEP 03 (2016) 114 [arXiv:1511.06315] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  52. [52]
    Y. Geyer, L. Mason, R. Monteiro and P. Tourkine, Two-Loop Scattering Amplitudes from the Riemann Sphere, Phys. Rev. D 94 (2016) 125029 [arXiv:1607.08887] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  53. [53]
    E. Casali and P. Tourkine, On the null origin of the ambitwistor string, JHEP 11 (2016) 036 [arXiv:1606.05636] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  54. [54]
    E. Casali, Y. Herfray and P. Tourkine, The complex null string, Galilean conformal algebra and scattering equations, JHEP 10 (2017) 164 [arXiv:1707.09900] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  55. [55]
    Y. Geyer, A.E. Lipstein and L.J. Mason, Ambitwistor Strings in Four Dimensions, Phys. Rev. Lett. 113 (2014) 081602 [arXiv:1404.6219] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    I. Bandos, Twistor/ambitwistor strings and null-superstrings in spacetime of D = 4, 10 and 11 dimensions, JHEP 09 (2014) 086 [arXiv:1404.1299] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  57. [57]
    T. Adamo, E. Casali and D. Skinner, Perturbative gravity at null infinity, Class. Quant. Grav. 31 (2014) 225008 [arXiv:1405.5122] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  58. [58]
    Y. Geyer, A.E. Lipstein and L. Mason, Ambitwistor strings at null infinity and (subleading) soft limits, Class. Quant. Grav. 32 (2015) 055003 [arXiv:1406.1462] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  59. [59]
    A.E. Lipstein, Soft Theorems from Conformal Field Theory, JHEP 06 (2015) 166 [arXiv:1504.01364] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  60. [60]
    T. Adamo and E. Casali, Perturbative gauge theory at null infinity, Phys. Rev. D 91 (2015) 125022 [arXiv:1504.02304] [INSPIRE].ADSMathSciNetGoogle Scholar
  61. [61]
    N. Berkovits, Infinite Tension Limit of the Pure Spinor Superstring, JHEP 03 (2014) 017 [arXiv:1311.4156] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  62. [62]
    O. Chandía and B.C. Vallilo, Ambitwistor pure spinor string in a type-II supergravity background, JHEP 06 (2015) 206 [arXiv:1505.05122] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  63. [63]
    R.L. Jusinskas, Notes on the ambitwistor pure spinor string, JHEP 05 (2016) 116 [arXiv:1604.02915] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  64. [64]
    R.A. Reid-Edwards, Ambitwistor String Theory in the Operator Formalism, JHEP 06 (2016) 084 [arXiv:1511.08406] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  65. [65]
    R.A. Reid-Edwards and D.A. Riccombeni, A Superstring Field Theory for Supergravity, JHEP 09 (2017) 103 [arXiv:1701.05495] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  66. [66]
    T. Adamo, R. Monteiro and M.F. Paulos, Space-time CFTs from the Riemann sphere, JHEP 08 (2017) 067 [arXiv:1703.04589] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  67. [67]
    T. Adamo, E. Casali and D. Skinner, A Worldsheet Theory for Supergravity, JHEP 02 (2015) 116 [arXiv:1409.5656] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  68. [68]
    T. Adamo, Gravity with a cosmological constant from rational curves, JHEP 11 (2015) 098 [arXiv:1508.02554] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  69. [69]
    T. Adamo, E. Casali, L. Mason and S. Nekovar, Scattering on plane waves and the double copy, arXiv:1706.08925 [INSPIRE].
  70. [70]
    C. LeBrun, Spaces of complex null geodesics in complex-riemannian geometry, Trans. Am. Math. Soc. 278 (1983) 209.MathSciNetCrossRefMATHGoogle Scholar
  71. [71]
    A. Einstein, Näherungsweise Integration der Feldgleichungen der Gravitation, Sitzungsber. K. Preuss. Akad. Wiss. XXXII (1916) 688.Google Scholar
  72. [72]
    O.R. Baldwin and G.B. Jeffery, The relativity theory of plane waves, Proc. Roy. Soc. Lond. A 111 (1926) 95.ADSCrossRefMATHGoogle Scholar
  73. [73]
    J. Ehlers and W. Kundt, Exact solutions of the gravitational field equations, in Gravitation, An Introduction to Current Research, L. Witten ed., Wiley, New York U.S.A. (1962), p. 49.Google Scholar
  74. [74]
    J. Griffiths, Colliding plane waves in general relativity, Oxford Mathematical Monographs, Clarendon Press (1991).Google Scholar
  75. [75]
    H. Stephani, D. Kramer, M.A.H. MacCallum, C. Hoenselaers and E. Herlt, Exact solutions of Einstein’s field equations, 2nd edition, Cambridge University Press (2004).Google Scholar
  76. [76]
    M. Blau, Plane waves and Penrose limits, Université de Neuchâtel, Neuchâtel Switzerland (2011) http://www.blau.itp.unibe.ch/Lecturenotes.html.
  77. [77]
    A. Einstein and N. Rosen, On Gravitational waves, J. Franklin Inst. 223 (1937) 43 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  78. [78]
    H.W. Brinkmann, Einstein spapces which are mapped conformally on each other, Math. Ann. 94 (1925) 119 [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  79. [79]
    R. Penrose, A Remarkable property of plane waves in general relativity, Rev. Mod. Phys. 37 (1965) 215 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  80. [80]
    H. Bondi and F.A.E. Pirani, Gravitational Waves in General Relativity. 13: Caustic Property of Plane Waves, Proc. Roy. Soc. Lond. A 421 (1989) 395 [INSPIRE].
  81. [81]
    H. Bondi, F.A.E. Pirani and I. Robinson, Gravitational waves in general relativity. 3. Exact plane waves, Proc. Roy. Soc. Lond. A 251 (1959) 519 [INSPIRE].
  82. [82]
    G.W. Gibbons, Quantized Fields Propagating in Plane Wave Space-Times, Commun. Math. Phys. 45 (1975) 191 [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    J. Garriga and E. Verdaguer, Scattering of quantum particles by gravitational plane waves, Phys. Rev. D 43 (1991) 391 [INSPIRE].ADSMathSciNetGoogle Scholar
  84. [84]
    F.G. Friedlander, The Wave Equation on a Curved Space-Time, Cambridge University Press (1975).Google Scholar
  85. [85]
    R.S. Ward, Progressing waves in flat space-time and in plane wave space-times, Class. Quant. Grav. 4 (1987) 775 [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    L.J. Mason, On Ward’s integral formula for the wave equation in plane wave space-times, Twistor Newsl. 28 (1989) 17.Google Scholar
  87. [87]
    D. Friedan, E.J. Martinec and S.H. Shenker, Conformal Invariance, Supersymmetry and String Theory, Nucl. Phys. B 271 (1986) 93 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  88. [88]
    O. Chandía and B.C. Vallilo, On-shell type-II supergravity from the ambitwistor pure spinor string, Class. Quant. Grav. 33 (2016) 185003 [arXiv:1511.03329] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  89. [89]
    T. Azevedo and R.L. Jusinskas, Background constraints in the infinite tension limit of the heterotic string, JHEP 08 (2016) 133 [arXiv:1607.06805] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  90. [90]
    Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative Quantum Gravity as a Double Copy of Gauge Theory, Phys. Rev. Lett. 105 (2010) 061602 [arXiv:1004.0476] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Tim Adamo
    • 1
    • 3
  • Eduardo Casali
    • 2
    • 3
  • Lionel Mason
    • 2
    • 3
  • Stefan Nekovar
    • 2
  1. 1.Theoretical Physics Group, Blackett Laboratory, Imperial College LondonLondonUnited Kingdom
  2. 2.The Mathematical InstituteUniversity of OxfordOxfordUnited Kingdom
  3. 3.Kavli Institute for Theoretical Physics, Kohn HallUniversity of CaliforniaSanta BarbaraU.S.A.

Personalised recommendations