Advertisement

Journal of High Energy Physics

, 2017:155 | Cite as

Kinematic space for conical defects

  • Jesse C. Cresswell
  • Amanda W. Peet
Open Access
Regular Article - Theoretical Physics

Abstract

Kinematic space can be used as an intermediate step in the AdS/CFT dictionary and lends itself naturally to the description of diffeomorphism invariant quantities. From the bulk it has been defined as the space of boundary anchored geodesics, and from the boundary as the space of pairs of CFT points. When the bulk is not globally AdS3 the appearance of non-minimal geodesics leads to ambiguities in these definitions. In this work conical defect spacetimes are considered as an example where non-minimal geodesics are common. From the bulk it is found that the conical defect kinematic space can be obtained from the AdS3 kinematic space by the same quotient under which one obtains the defect from AdS3. The resulting kinematic space is one of many equivalent fundamental regions. From the boundary the conical defect kinematic space can be determined by breaking up OPE blocks into contributions from individual bulk geodesics. A duality is established between partial OPE blocks and bulk fields integrated over individual geodesics, minimal or non-minimal.

Keywords

AdS-CFT Correspondence Gauge-gravity correspondence Conformal Field Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Supplementary material

13130_2017_7131_MOESM1_ESM.cdf (39 kb)
ESM1 CD_Geodesics_Kinematic_Space.cdf (CDF 39 kb)
13130_2017_7131_MOESM2_ESM.nb (80 kb)
ESM2 CD_Geodesics_Kinematic_Space.nb (NB 80 kb)

References

  1. [1]
    J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  4. [4]
    S. Ferrara, A.F. Grillo and R. Gatto, Manifestly conformal covariant operator-product expansion, Lett. Nuovo Cim. 2 (1971) 1363 [INSPIRE].MathSciNetCrossRefGoogle Scholar
  5. [5]
    S. Ferrara, A.F. Grillo, G. Parisi and R. Gatto, Covariant expansion of the conformal four-point function, Nucl. Phys. B 49 (1972) 77 [Erratum ibid. B 53 (1973) 643] [INSPIRE].
  6. [6]
    E. Hijano, P. Kraus and R. Snively, Worldline approach to semi-classical conformal blocks, JHEP 07 (2015) 131 [arXiv:1501.02260] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    E. Hijano, P. Kraus, E. Perlmutter and R. Snively, Witten Diagrams Revisited: The AdS Geometry of Conformal Blocks, JHEP 01 (2016) 146 [arXiv:1508.00501v2] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    B. Czech, L. Lamprou, S. McCandlish and J. Sully, Integral Geometry and Holography, JHEP 10 (2015) 175 [arXiv:1505.05515v1] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    B. Czech, L. Lamprou, S. McCandlish, B. Mosk and J. Sully, A Stereoscopic Look into the Bulk, JHEP 07 (2016) 129 [arXiv:1604.03110v2] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    J. de Boer, M.P. Heller, R.C. Myers and Y. Neiman, Holographic de Sitter Geometry from Entanglement in Conformal Field Theory, Phys. Rev. Lett. 116 (2016) 061602 [arXiv:1509.00113] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    W. Donnelly and S.B. Giddings, Diffeomorphism-invariant observables and their nonlocal algebra, Phys. Rev. D 93 (2016) 024030 [arXiv:1507.07921] [INSPIRE].ADSMathSciNetGoogle Scholar
  12. [12]
    W. Donnelly and S.B. Giddings, Observables, gravitational dressing and obstructions to locality and subsystems, Phys. Rev. D 94 (2016) 104038 [arXiv:1607.01025] [INSPIRE].ADSMathSciNetGoogle Scholar
  13. [13]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    V. Balasubramanian, B.D. Chowdhury, B. Czech, J. de Boer and M.P. Heller, Bulk curves from boundary data in holography, Phys. Rev. D 89 (2014) 086004 [arXiv:1310.4204] [INSPIRE].ADSGoogle Scholar
  15. [15]
    S. Bhowmick, S. Das and B. Ezhuthachan, Entanglement entropy and kinematic space in BCFT, arXiv:1703.01759v2 [INSPIRE].
  16. [16]
    M. Bañados, C. Teitelboim and J. Zanelli, The Black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2 + 1) black hole, Phys. Rev. D 48 (1993) 1506 [Erratum ibid. D 88 (2013) 069902] [gr-qc/9302012] [INSPIRE].
  18. [18]
    S. Deser, R. Jackiw and G. ’t Hooft, Three-Dimensional Einstein Gravity: Dynamics of Flat Space, Annals Phys. 152 (1984) 220 [INSPIRE].
  19. [19]
    V. Balasubramanian, B.D. Chowdhury, B. Czech and J. de Boer, Entwinement and the emergence of spacetime, JHEP 01 (2015) 048 [arXiv:1406.5859v2] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  20. [20]
    B. Freivogel, R.A. Jefferson, L. Kabir, B. Mosk and I.-S. Yang, Casting Shadows on Holographic Reconstruction, Phys. Rev. D 91 (2015) 086013 [arXiv:1412.5175] [INSPIRE].ADSGoogle Scholar
  21. [21]
    V. Balasubramanian, A. Bernamonti, B. Craps, T. De Jonckheere and F. Galli, Entwinement in discretely gauged theories, JHEP 12 (2016) 094 [arXiv:1609.03991] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    J.-d. Zhang and B. Chen, Kinematic Space and Wormholes, JHEP 01 (2017) 092 [arXiv:1610.07134v2] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    R.C. Myers, J. Rao and S. Sugishita, Holographic Holes in Higher Dimensions, JHEP 06 (2014) 044 [arXiv:1403.3416v2] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    R. Espíndola, A. Guijosa, A. Landetta and J.F. Pedraza, What’s the Point? Hole-ography in Poincaré AdS, arXiv:1708.02958v1 [INSPIRE].
  25. [25]
    V. Balasubramanian and S.F. Ross, Holographic particle detection, Phys. Rev. D 61 (2000) 044007 [hep-th/9906226v1] [INSPIRE].ADSMathSciNetGoogle Scholar
  26. [26]
    C.T. Asplund, A. Bernamonti, F. Galli and T. Hartman, Holographic Entanglement Entropy from 2d CFT: Heavy States and Local Quenches, JHEP 02 (2015) 171 [arXiv:1410.1392] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    B. Czech and L. Lamprou, Holographic definition of points and distances, Phys. Rev. D 90 (2014) 106005 [arXiv:1409.4473v1] [INSPIRE].ADSGoogle Scholar
  28. [28]
    C.T. Asplund, N. Callebaut and C. Zukowski, Equivalence of Emergent de Sitter Spaces from Conformal Field Theory, JHEP 09 (2016) 154 [arXiv:1604.02687] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    J. de Boer, F.M. Haehl, M.P. Heller and R.C. Myers, Entanglement, holography and causal diamonds, JHEP 08 (2016) 162 [arXiv:1606.03307] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    A. Karch, J. Sully, C.F. Uhlemann and D.G.E. Walker, Boundary Kinematic Space, JHEP 08 (2017) 039 [arXiv:1703.02990v1] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    J.D. Brown and M. Henneaux, Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity, Commun. Math. Phys. 104 (1986) 207 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    F.A. Dolan and H. Osborn, Conformal partial waves and the operator product expansion, Nucl. Phys. B 678 (2004) 491 [hep-th/0309180] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    J.M. Maldacena and A. Strominger, AdS 3 black holes and a stringy exclusion principle, JHEP 12 (1998) 005 [hep-th/9804085] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  34. [34]
    O. Lunin, S.D. Mathur and A. Saxena, What is the gravity dual of a chiral primary?, Nucl. Phys. B 655 (2003) 185 [hep-th/0211292] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    J. de Boer, M.M. Sheikh-Jabbari and J. Simón, Near Horizon Limits of Massless BTZ and Their CFT Duals, Class. Quant. Grav. 28 (2011) 175012 [arXiv:1011.1897v2] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    V. Balasubramanian, A. Naqvi and J. Simón, A Multiboundary AdS orbifold and DLCQ holography: A Universal holographic description of extremal black hole horizons, JHEP 08 (2004) 023 [hep-th/0311237] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    I.Y. Aref’eva and M.A. Khramtsov, AdS/CFT prescription for angle-deficit space and winding geodesics, JHEP 04 (2016) 121 [arXiv:1601.02008v2] [INSPIRE].ADSMathSciNetGoogle Scholar
  38. [38]
    I.Y. Aref’eva, M.A. Khramtsov and M.D. Tikhanovskaya, Improved image method for a holographic description of conical defects, Theor. Math. Phys. 189 (2016) 1660 [arXiv:1604.08905] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  39. [39]
    I.Y. Aref’eva, M.A. Khramtsov and M.D. Tikhanovskaya, Thermalization after holographic bilocal quench, JHEP 09 (2017) 115 [arXiv:1706.07390] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  40. [40]
    D. Pappadopulo, S. Rychkov, J. Espin and R. Rattazzi, OPE Convergence in Conformal Field Theory, Phys. Rev. D 86 (2012) 105043 [arXiv:1208.6449] [INSPIRE].ADSGoogle Scholar
  41. [41]
    B. Czech, L. Lamprou, S. McCandlish and J. Sully, Tensor Networks from Kinematic Space, JHEP 07 (2016) 100 [arXiv:1512.01548] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  42. [42]
    B. Carneiro da Cunha and M. Guica, Exploring the BTZ bulk with boundary conformal blocks, arXiv:1604.07383v1 [INSPIRE].
  43. [43]
    M. Guica, Bulk fields from the boundary OPE, arXiv:1610.08952v2 [INSPIRE].
  44. [44]
    J. Lin, M. Marcolli, H. Ooguri and B. Stoica, Locality of Gravitational Systems from Entanglement of Conformal Field Theories, Phys. Rev. Lett. 114 (2015) 221601 [arXiv:1412.1879] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    H.-J. Matschull, Black hole creation in (2 + 1)-dimensions, Class. Quant. Grav. 16 (1999) 1069 [gr-qc/9809087] [INSPIRE].
  46. [46]
    I.Y. Aref’eva, A. Bagrov, P. Säterskog and K. Schalm, Holographic dual of a time machine, Phys. Rev. D 94 (2016) 044059 [arXiv:1508.04440] [INSPIRE].ADSMathSciNetGoogle Scholar
  47. [47]
    K. Goto and T. Takayanagi, CFT descriptions of bulk local states in the AdS black holes, JHEP 10 (2017) 153 [arXiv:1704.00053v1] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  48. [48]
    S. Giusto, O. Lunin, S.D. Mathur and D. Turton, D1-D5-P microstates at the cap, JHEP 02 (2013) 050 [arXiv:1211.0306] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    J. Son, String theory on AdS 3/Z N, hep-th/0107131v1 [INSPIRE].
  50. [50]
    A. Maloney, H. Maxfield and G.S. Ng, A conformal block Farey tail, JHEP 06 (2017) 117 [arXiv:1609.02165] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  51. [51]
    B. Czech et al., Tensor network quotient takes the vacuum to the thermal state, Phys. Rev. B 94 (2016) 085101 [arXiv:1510.07637] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of TorontoTorontoCanada
  2. 2.Department of MathematicsUniversity of TorontoTorontoCanada

Personalised recommendations