Advertisement

Journal of High Energy Physics

, 2017:146 | Cite as

Full diffeomorphism and Lorentz invariance in 4D \( \mathcal{N}=1 \) superfield description of 6D SUGRA

  • Hiroyuki Abe
  • Shuntaro Aoki
  • Yutaka Sakamura
Open Access
Regular Article - Theoretical Physics

Abstract

We complete the four-dimensional \( \mathcal{N}=1 \) superfield description of six-dimensional supergravity. The missing ingredients in the previous works are the superfields that contain the sechsbein \( {e}_4^{\underline{\nu}},{e}_5^{\underline{\nu}},{e}_{\mu}^{\underline{4}},{e}_{\mu}^{\underline{5}} \) and the second gravitino. They are necessary to make the action invariant under the diffeomorphisms and the Lorentz transformations involving the extra dimensions. We find the corresponding superfield transformation laws, and show the invariance of the action under them. We also check that the resultant action reproduces the known superfield description of five-dimensional supergravity through the dimensional reduction.

Keywords

Field Theories in Higher Dimensions Supergravity Models Superspaces 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    N. Marcus, A. Sagnotti and W. Siegel, Ten-dimensional supersymmetric Yang-Mills theory in terms of four-dimensional superfields, Nucl. Phys. B 224 (1983) 159 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    N. Arkani-Hamed, T. Gregoire and J.G. Wacker, Higher dimensional supersymmetry in 4D superspace, JHEP 03 (2002) 055 [hep-th/0101233] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    D. Marti and A. Pomarol, Supersymmetric theories with compact extra dimensions in N = 1 superfields, Phys. Rev. D 64 (2001) 105025 [hep-th/0106256] [INSPIRE].ADSMathSciNetGoogle Scholar
  4. [4]
    A. Hebecker, 5D super Yang-Mills theory in 4D superspace, superfield brane operators and applications to orbifold GUTs, Nucl. Phys. B 632 (2002) 101 [hep-ph/0112230] [INSPIRE].
  5. [5]
    H. Abe, T. Kobayashi, H. Ohki and K. Sumita, Superfield description of 10D SYM theory with magnetized extra dimensions, Nucl. Phys. B 863 (2012) 1 [arXiv:1204.5327] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    H. Abe, T. Horie and K. Sumita, Superfield description of (4 + 2n)-dimensional SYM theories and their mixtures on magnetized tori, Nucl. Phys. B 900 (2015) 331 [arXiv:1507.02425] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    W.D. Linch, III, M.A. Luty and J. Phillips, Five-dimensional supergravity in N = 1 superspace, Phys. Rev. D 68 (2003) 025008 [hep-th/0209060] [INSPIRE].ADSMathSciNetGoogle Scholar
  8. [8]
    F. Paccetti Correia, M.G. Schmidt and Z. Tavartkiladze, Superfield approach to 5D conformal SUGRA and the radion, Nucl. Phys. B 709 (2005) 141 [hep-th/0408138] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    H. Abe and Y. Sakamura, Superfield description of 5D supergravity on general warped geometry, JHEP 10 (2004) 013 [hep-th/0408224] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    M. Kaku, P.K. Townsend and P. van Nieuwenhuizen, Properties of conformal supergravity, Phys. Rev. D 17 (1978) 3179 [INSPIRE].ADSMathSciNetGoogle Scholar
  11. [11]
    M. Kaku and P.K. Townsend, Poincaré supergravity as broken superconformal gravity, Phys. Lett. B 76 (1978) 54 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    T. Kugo and S. Uehara, Conformal and Poincaré tensor calculi in N = 1 supergravity, Nucl. Phys. B 226 (1983) 49 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    D. Butter, N = 1 conformal superspace in four dimensions, Annals Phys. 325 (2010) 1026 [arXiv:0906.4399] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    Y. Sakamura, Direct relation of linearized supergravity to superconformal formulation, JHEP 12 (2011) 008 [arXiv:1107.4247] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    H. Abe and Y. Sakamura, Roles of Z 2-odd N = 1 multiplets in off-shell dimensional reduction of 5D supergravity, Phys. Rev. D 75 (2007) 025018 [hep-th/0610234] [INSPIRE].ADSGoogle Scholar
  16. [16]
    F. Paccetti Correia, M.G. Schmidt and Z. Tavartkiladze, 4D superfield reduction of 5D orbifold SUGRA and heterotic M-theory, Nucl. Phys. B 751 (2006) 222 [hep-th/0602173] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    H. Abe and Y. Sakamura, Flavor structure with multi moduli in 5D supergravity, Phys. Rev. D 79 (2009) 045005 [arXiv:0807.3725] [INSPIRE].ADSGoogle Scholar
  18. [18]
    H. Abe, H. Otsuka, Y. Sakamura and Y. Yamada, SUSY flavor structure of generic 5D supergravity models, Eur. Phys. J. C 72 (2012) 2018 [arXiv:1111.3721] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    Y. Sakamura, Superfield description of gravitational couplings in generic 5D supergravity, JHEP 07 (2012) 183 [arXiv:1204.6603] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    Y. Sakamura, One-loop Kähler potential in 5D gauged supergravity with generic prepotential, Nucl. Phys. B 873 (2013) 165 [Erratum ibid. B 873 (2013) 728] [arXiv:1302.7244] [INSPIRE].
  21. [21]
    Y. Sakamura and Y. Yamada, Impacts of non-geometric moduli on effective theory of 5D supergravity, JHEP 11 (2013) 090 [Erratum ibid. 01 (2014) 181] [arXiv:1307.5585] [INSPIRE].
  22. [22]
    Y. Sakamura and Y. Yamada, Natural realization of a large extra dimension in 5D supersymmetric theory, PTEP 2014 (2014) 093B02 [arXiv:1401.1921] [INSPIRE].
  23. [23]
    H. Nishino and E. Sezgin, Matter and gauge couplings of N = 2 supergravity in six-dimensions, Phys. Lett. B 144 (1984) 187 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    A. Salam and E. Sezgin, Chiral compactification on Minkowski ×S 2 of N = 2 Einstein-Maxwell supergravity in six-dimensions, Phys. Lett. B 147 (1984) 47 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    E. Bergshoeff, E. Sezgin and A. Van Proeyen, Superconformal tensor calculus and matter couplings in six-dimensions, Nucl. Phys. B 264 (1986) 653 [Erratum ibid. B 598 (2001) 667] [INSPIRE].
  26. [26]
    S. Randjbar-Daemi, A. Salam, E. Sezgin and J.A. Strathdee, An anomaly free model in six-dimensions, Phys. Lett. B 151 (1985) 351 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    M.B. Green, J.H. Schwarz and P.C. West, Anomaly free chiral theories in six-dimensions, Nucl. Phys. B 254 (1985) 327 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    V. Kumar, D.R. Morrison and W. Taylor, Global aspects of the space of 6D N = 1 supergravities, JHEP 11 (2010) 118 [arXiv:1008.1062] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    F. Coomans and A. Van Proeyen, Off-shell N = (1, 0), D = 6 supergravity from superconformal methods, JHEP 02 (2011) 049 [Erratum ibid. 01 (2012) 119] [arXiv:1101.2403] [INSPIRE].
  30. [30]
    H. Abe, Y. Sakamura and Y. Yamada, N = 1 superfield description of vector-tensor couplings in six dimensions, JHEP 04 (2015) 035 [arXiv:1501.07642] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    W.D. Linch, III and G. Tartaglino-Mazzucchelli, Six-dimensional supergravity and projective superfields, JHEP 08 (2012) 075 [arXiv:1204.4195] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    A. Karlhede, U. Lindström and M. Roček, Selfinteracting tensor multiplets in N = 2 superspace, Phys. Lett. B 147 (1984) 297 [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    U. Lindström and M. Roček, New hyper-Kähler metrics and new supermultiplets, Commun. Math. Phys. 115 (1988) 21 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  34. [34]
    U. Lindström and M. Roček, N = 2 super Yang-Mills theory in projective superspace, Commun. Math. Phys. 128 (1990) 191 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    J. Grundberg and U. Lindström, Actions for linear multiplets in six-dimensions, Class. Quant. Grav. 2 (1985) L33 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    S.J. Gates Jr., S. Penati and G. Tartaglino-Mazzucchelli, 6D supersymmetry, projective superspace and 4D, N = 1 superfields, JHEP 05 (2006) 051 [hep-th/0508187] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    S.J. Gates Jr., S. Penati and G. Tartaglino-Mazzucchelli, 6D supersymmetric nonlinear σ-models in 4D, N = 1 superspace, JHEP 09 (2006) 006 [hep-th/0604042] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    H. Abe, Y. Sakamura and Y. Yamada, N = 1 superfield description of six-dimensional supergravity, JHEP 10 (2015) 181 [arXiv:1507.08435] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    T. Fujita, T. Kugo and K. Ohashi, Off-shell formulation of supergravity on orbifold, Prog. Theor. Phys. 106 (2001) 671 [hep-th/0106051] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton Univ. Pr., Princeton U.S.A., (1992) [INSPIRE].
  41. [41]
    S. Ferrara and B. Zumino, Structure of conformal supergravity, Nucl. Phys. B 134 (1978) 301 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    W. Siegel and S.J. Gates Jr., Superfield supergravity, Nucl. Phys. B 147 (1979) 77 [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Department of PhysicsWaseda UniversityTokyoJapan
  2. 2.KEK Theory Center, Institute of Particle and Nuclear StudiesKEKTsukubaJapan
  3. 3.Department of Particles and Nuclear PhysicsSOKENDAI (The Graduate University for Advanced Studies)TsukubaJapan

Personalised recommendations