Advertisement

Journal of High Energy Physics

, 2017:136 | Cite as

Spontaneous CP violation in multi-Higgs potentials with triplets of Δ(3n2) and Δ(6n2)

  • Ivo de Medeiros Varzielas
  • Stephen F. King
  • Christoph Luhn
  • Thomas NederEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

Motivated by discrete flavour symmetry models, we analyse Spontaneous CP Violation (SCPV) for potentials involving three or six Higgs fields (both electroweak doublets and singlets) which fall into irreducible triplet representations of discrete symmetries belonging to the Δ(3n2) and Δ(6n2) series, including A4, S4, Δ(27) and Δ(54). For each case, we give the potential and find various global minima for different regions of the parameter space of the potential. Using CP-odd basis Invariants that indicate the presence of Spontaneous CP Violation we separate the VEVs into those that do or do not violate CP. In cases where CP is preserved we reveal a CP symmetry of the potential that is preserved by those VEVs, otherwise we display a non-zero CP-odd Invariant. Finally we identify interesting cases where there is Spontaneous Geometrical CP Violation in which the VEVs have geometrical phases.

Keywords

CP violation Discrete Symmetries Higgs Physics Beyond Standard Model 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  3. [3]
    J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs Hunter’s Guide, Front. Phys. 80 (2000) 1 [INSPIRE].Google Scholar
  4. [4]
    G.C. Branco, P.M. Ferreira, L. Lavoura, M.N. Rebelo, M. Sher and J.P. Silva, Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    S. Chang, S.K. Kang, J.-P. Lee, K.Y. Lee, S.C. Park and J. Song, Two Higgs doublet models for the LHC Higgs boson data at \( \sqrt{s}=7 \) and 8 TeV, JHEP 09 (2014) 101 [arXiv:1310.3374] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    I.P. Ivanov, Building and testing models with extended Higgs sectors, Prog. Part. Nucl. Phys. 95 (2017) 160 [arXiv:1702.03776] [INSPIRE].
  7. [7]
    S. Davidson and H.E. Haber, Basis-independent methods for the two-Higgs-doublet model, Phys. Rev. D 72 (2005) 035004 [Erratum ibid. D 72 (2005) 099902] [hep-ph/0504050] [INSPIRE].
  8. [8]
    M. Maniatis, A. von Manteuffel and O. Nachtmann, CP violation in the general two-Higgs-doublet model: A geometric view, Eur. Phys. J. C 57 (2008) 719 [arXiv:0707.3344] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    C.C. Nishi, Physical parameters and basis transformations in the Two-Higgs-Doublet model, Phys. Rev. D 77 (2008) 055009 [arXiv:0712.4260] [INSPIRE].ADSGoogle Scholar
  10. [10]
    I.P. Ivanov, Minkowski space structure of the Higgs potential in 2HDM. II. Minima, symmetries and topology, Phys. Rev. D 77 (2008) 015017 [arXiv:0710.3490] [INSPIRE].
  11. [11]
    I.P. Ivanov, V. Keus and E. Vdovin, Abelian symmetries in multi-Higgs-doublet models, J. Phys. A 45 (2012) 215201 [arXiv:1112.1660] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  12. [12]
    I.P. Ivanov and C.C. Nishi, Properties of the general NHDM. I. The orbit space, Phys. Rev. D 82 (2010) 015014 [arXiv:1004.1799] [INSPIRE].
  13. [13]
    I.P. Ivanov, Properties of the general NHDM. II. Higgs potential and its symmetries, JHEP 07 (2010) 020 [arXiv:1004.1802] [INSPIRE].
  14. [14]
    R.N. Mohapatra and C.C. Nishi, Absence of Spontaneous CP-violation in Multi-Higgs Doublet Extension of MSSM, Phys. Rev. D 84 (2011) 095023 [arXiv:1108.1769] [INSPIRE].ADSGoogle Scholar
  15. [15]
    I.P. Ivanov and E. Vdovin, Classification of finite reparametrization symmetry groups in the three-Higgs-doublet model, Eur. Phys. J. C 73 (2013) 2309 [arXiv:1210.6553] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    G. Altarelli and F. Feruglio, Discrete Flavor Symmetries and Models of Neutrino Mixing, Rev. Mod. Phys. 82 (2010) 2701 [arXiv:1002.0211] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    H. Ishimori, T. Kobayashi, H. Ohki, Y. Shimizu, H. Okada and M. Tanimoto, Non-Abelian Discrete Symmetries in Particle Physics, Prog. Theor. Phys. Suppl. 183 (2010) 1 [arXiv:1003.3552] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  18. [18]
    W. Grimus and P.O. Ludl, Finite flavour groups of fermions, J. Phys. A 45 (2012) 233001 [arXiv:1110.6376] [INSPIRE].ADSzbMATHGoogle Scholar
  19. [19]
    S.F. King and C. Luhn, Neutrino Mass and Mixing with Discrete Symmetry, Rept. Prog. Phys. 76 (2013) 056201 [arXiv:1301.1340] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    S.F. King, A. Merle, S. Morisi, Y. Shimizu and M. Tanimoto, Neutrino Mass and Mixing: from Theory to Experiment, New J. Phys. 16 (2014) 045018 [arXiv:1402.4271] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    S.F. King, Models of Neutrino Mass, Mixing and CP-violation, J. Phys. G 42 (2015) 123001 [arXiv:1510.02091] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    M. Kobayashi and T. Maskawa, CP Violation in the Renormalizable Theory of Weak Interaction, Prog. Theor. Phys. 49 (1973) 652 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    C. Jarlskog, Commutator of the Quark Mass Matrices in the Standard Electroweak Model and a Measure of Maximal CP-violation, Phys. Rev. Lett. 55 (1985) 1039 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    T.D. Lee, A Theory of Spontaneous T Violation, Phys. Rev. D 8 (1973) 1226 [INSPIRE].ADSGoogle Scholar
  25. [25]
    J. Bernabeu, G.C. Branco and M. Gronau, CP Restrictions On Quark Mass Matrices, Phys. Lett. B 169 (1986) 243 [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    G.C. Branco, L. Lavoura and M.N. Rebelo, Majorana Neutrinos and CP Violation in the Leptonic Sector, Phys. Lett. B 180 (1986) 264 [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    G.C. Branco, I. de Medeiros Varzielas and S.F. King, Invariant approach to CP in family symmetry models, Phys. Rev. D 92 (2015) 036007 [arXiv:1502.03105] [INSPIRE].ADSMathSciNetGoogle Scholar
  28. [28]
    G.C. Branco, I. de Medeiros Varzielas and S.F. King, Invariant approach to \( \mathcal{C}\mathcal{P} \) in unbroken Δ(27), Nucl. Phys. B 899 (2015) 14 [arXiv:1505.06165] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    V. Keus, S.F. King, S. Moretti and K. Yagyu, CP Violating Two-Higgs-Doublet Model: Constraints and LHC Predictions, JHEP 04 (2016) 048 [arXiv:1510.04028] [INSPIRE].ADSGoogle Scholar
  30. [30]
    A. Mendez and A. Pomarol, Signals of CP-violation in the Higgs sector, Phys. Lett. B 272 (1991) 313 [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    L. Lavoura and J.P. Silva, Fundamental CP-violating quantities in a SU(2) × U(1) model with many Higgs doublets, Phys. Rev. D 50 (1994) 4619 [hep-ph/9404276] [INSPIRE].
  32. [32]
    F.J. Botella and J.P. Silva, Jarlskog-like invariants for theories with scalars and fermions, Phys. Rev. D 51 (1995) 3870 [hep-ph/9411288] [INSPIRE].
  33. [33]
    G.C. Branco, M.N. Rebelo and J.I. Silva-Marcos, CP-odd invariants in models with several Higgs doublets, Phys. Lett. B 614 (2005) 187 [hep-ph/0502118] [INSPIRE].
  34. [34]
    J.F. Gunion and H.E. Haber, Conditions for CP-violation in the general two-Higgs-doublet model, Phys. Rev. D 72 (2005) 095002 [hep-ph/0506227] [INSPIRE].
  35. [35]
    I. de Medeiros Varzielas, S.F. King, C. Luhn and T. Neder, CP-odd invariants for multi-Higgs models: applications with discrete symmetry, Phys. Rev. D 94 (2016) 056007 [arXiv:1603.06942] [INSPIRE].ADSMathSciNetGoogle Scholar
  36. [36]
    I. de Medeiros Varzielas, S.F. King, C. Luhn and T. Neder, Minima of multi-Higgs potentials with triplets of Δ(3n 2) and Δ(6n 2), arXiv:1704.06322 [INSPIRE].
  37. [37]
    G.C. Branco, J.M. Gerard and W. Grimus, Geometrical T Violation, Phys. Lett. B 136 (1984) 383 [INSPIRE].ADSGoogle Scholar
  38. [38]
    I. de Medeiros Varzielas, Geometrical CP-violation in multi-Higgs models, JHEP 08 (2012) 055 [arXiv:1205.3780] [INSPIRE].CrossRefGoogle Scholar
  39. [39]
    I.P. Ivanov and L. Lavoura, Geometrical CP-violation in the N-Higgs-doublet model, Eur. Phys. J. C 73 (2013) 2416 [arXiv:1302.3656] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    I.P. Ivanov and C.C. Nishi, Symmetry breaking patterns in 3HDM, JHEP 01 (2015) 021 [arXiv:1410.6139] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    D. Emmanuel-Costa, O.M. Ogreid, P. Osland and M.N. Rebelo, Spontaneous symmetry breaking in the S 3 -symmetric scalar sector, JHEP 02 (2016) 154 [Erratum ibid. 08 (2016) 169] [arXiv:1601.04654] [INSPIRE].
  42. [42]
    A. Aranda, I.P. Ivanov and E. Jiménez, When the C in CP does not matter: anatomy of order-4 CP eigenstates and their Yukawa interactions, Phys. Rev. D 95 (2017) 055010 [arXiv:1608.08922] [INSPIRE].ADSGoogle Scholar
  43. [43]
    F. Feruglio, C. Hagedorn and R. Ziegler, Lepton Mixing Parameters from Discrete and CP Symmetries, JHEP 07 (2013) 027 [arXiv:1211.5560] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    M. Holthausen, M. Lindner and M.A. Schmidt, CP and Discrete Flavour Symmetries, JHEP 04 (2013) 122 [arXiv:1211.6953] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    M. Fallbacher and A. Trautner, Symmetries of symmetries and geometrical CP-violation, Nucl. Phys. B 894 (2015) 136 [arXiv:1502.01829] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    I.P. Ivanov and J.P. Silva, CP-conserving multi-Higgs model with irremovable complex coefficients, Phys. Rev. D 93 (2016) 095014 [arXiv:1512.09276] [INSPIRE].ADSGoogle Scholar
  47. [47]
    M. Ratz and A. Trautner, \( \mathcal{C}\mathcal{P} \) violation with an unbroken \( \mathcal{C}\mathcal{P} \) transformation, JHEP 02 (2017) 103 [arXiv:1612.08984] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    C. Luhn, S. Nasri and P. Ramond, The flavor group Δ(3n 2), J. Math. Phys. 48 (2007) 073501 [hep-th/0701188] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    E. Ma and G. Rajasekaran, Softly broken A 4 symmetry for nearly degenerate neutrino masses, Phys. Rev. D 64 (2001) 113012 [hep-ph/0106291] [INSPIRE].
  50. [50]
    R. de Adelhart Toorop, F. Bazzocchi, L. Merlo and A. Paris, Constraining Flavour Symmetries At The EW Scale I: The A4 Higgs Potential, JHEP 03 (2011) 035 [Erratum ibid. 01 (2013) 098] [arXiv:1012.1791] [INSPIRE].
  51. [51]
    R. de Adelhart Toorop, F. Bazzocchi, L. Merlo and A. Paris, Constraining Flavour Symmetries At The EW Scale II: The Fermion Processes, JHEP 03 (2011) 040 [arXiv:1012.2091] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  52. [52]
    I. de Medeiros Varzielas, S.F. King and G.G. Ross, Neutrino tri-bi-maximal mixing from a non-Abelian discrete family symmetry, Phys. Lett. B 648 (2007) 201 [hep-ph/0607045] [INSPIRE].
  53. [53]
    E. Ma, Neutrino Mass Matrix from Delta(27) Symmetry, Mod. Phys. Lett. A 21 (2006) 1917 [hep-ph/0607056] [INSPIRE].
  54. [54]
    C.C. Nishi, Generalized CP symmetries in Δ(27) flavor models, Phys. Rev. D 88 (2013) 033010 [arXiv:1306.0877] [INSPIRE].ADSGoogle Scholar
  55. [55]
    I. de Medeiros Varzielas and D. Emmanuel-Costa, Geometrical CP-violation, Phys. Rev. D 84 (2011) 117901 [arXiv:1106.5477] [INSPIRE].ADSGoogle Scholar
  56. [56]
    I. de Medeiros Varzielas, O. Fischer and V. Maurer, \( {\mathbb{A}}_4 \) symmetry at colliders and in the universe, JHEP 08 (2015) 080 [arXiv:1504.03955] [INSPIRE].CrossRefGoogle Scholar
  57. [57]
    I. de Medeiros Varzielas, D. Emmanuel-Costa and P. Leser, Geometrical CP-violation from Non-Renormalisable Scalar Potentials, Phys. Lett. B 716 (2012) 193 [arXiv:1204.3633] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    G. Bhattacharyya, I. de Medeiros Varzielas and P. Leser, A common origin of fermion mixing and geometrical CP-violation and its test through Higgs physics at the LHC, Phys. Rev. Lett. 109 (2012) 241603 [arXiv:1210.0545] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    G.C. Branco and I.P. Ivanov, Group-theoretic restrictions on generation of CP-violation in multi-Higgs-doublet models, JHEP 01 (2016) 116 [arXiv:1511.02764] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Ivo de Medeiros Varzielas
    • 1
    • 2
  • Stephen F. King
    • 1
  • Christoph Luhn
    • 3
  • Thomas Neder
    • 1
    • 4
    Email author
  1. 1.School of Physics and AstronomyUniversity of SouthamptonSouthamptonUnited Kingdom
  2. 2.CFTP, Departamento de Física, Instituto Superior TécnicoUniversidade de LisboaLisboaPortugal
  3. 3.Theoretische Physik 1, Naturwissenschaftlich-Technische FakultätUniversität SiegenSiegenGermany
  4. 4.AHEP Group, Institut de Física Corpuscular — C.S.I.C./Universitat de ValènciaPaterna (Valencia)Spain

Personalised recommendations