Advertisement

Journal of High Energy Physics

, 2017:132 | Cite as

Robustness of dark matter constraints and interplay with collider searches for New Physics

Open Access
Regular Article - Theoretical Physics
  • 39 Downloads

Abstract

We study the implications of dark matter searches, together with collider constraints, on the phenomenological MSSM with neutralino dark matter and focus on the consequences of the related uncertainties in some detail. We consider, inter alia, the latest results from AMS-02, Fermi-LAT and XENON1T. In particular, we examine the impact of the choice of the dark matter halo profile, as well as the propagation model for cosmic rays, for dark matter indirect detection and show that the constraints on the MSSM differ by one to two orders of magnitude depending on the astrophysical hypotheses. On the other hand, our limited knowledge of the local relic density in the vicinity of the Earth and the velocity of Earth in the dark matter halo leads to a factor 3 in the exclusion limits obtained by direct detection experiments. We identified the astrophysical models leading to the most conservative and the most stringent constraints and for each case studied the complementarities with the latest LHC measurements and limits from Higgs, SUSY and monojet searches. We show that combining all data from dark matter searches and colliders, a large fraction of our supersymmetric sample could be probed. Whereas the direct detection constraints are rather robust under the astrophysical assumptions, the uncertainties related to indirect detection can have an important impact on the number of the excluded points.

Keywords

Beyond Standard Model Supersymmetric Standard Model Cosmology of Theories beyond the SM 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M. Markevitch et al., Direct constraints on the dark matter self-interaction cross-section from the merging galaxy cluster 1E0657-56, Astrophys. J. 606 (2004) 819 [astro-ph/0309303] [INSPIRE].
  2. [2]
    D. Clowe, A. Gonzalez and M. Markevitch, Weak lensing mass reconstruction of the interacting cluster 1E0657-558: Direct evidence for the existence of dark matter, Astrophys. J. 604 (2004) 596 [astro-ph/0312273] [INSPIRE].
  3. [3]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  4. [4]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  5. [5]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  6. [6]
    MSSM Working Group collaboration, A. Djouadi et al., The Minimal supersymmetric standard model: Group summary report, hep-ph/9901246 [INSPIRE].
  7. [7]
    L. Roszkowski, E.M. Sessolo and A.J. Williams, Prospects for dark matter searches in the pMSSM, JHEP 02 (2015) 014 [arXiv:1411.5214] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    M. Cahill-Rowley, J.L. Hewett, A. Ismail and T.G. Rizzo, Lessons and prospects from the pMSSM after LHC Run I, Phys. Rev. D 91 (2015) 055002 [arXiv:1407.4130] [INSPIRE].ADSGoogle Scholar
  9. [9]
    A. Arbey, M. Battaglia and F. Mahmoudi, The Higgs boson, Supersymmetry and Dark Matter: Relations and Perspectives, Annalen Phys. 528 (2016) 179 [arXiv:1504.05091] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    ATLAS collaboration, Summary of the ATLAS experiment’s sensitivity to supersymmetry after LHC Run 1 — interpreted in the phenomenological MSSM, JHEP 10 (2015) 134 [arXiv:1508.06608] [INSPIRE].
  11. [11]
    G. Bertone et al., Global analysis of the pMSSM in light of the Fermi GeV excess: prospects for the LHC Run-II and astroparticle experiments, JCAP 04 (2016) 037 [arXiv:1507.07008] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    GAMBIT collaboration, P. Athron et al., GAMBIT: The Global and Modular Beyond-the-Standard-Model Inference Tool, arXiv:1705.07908 [INSPIRE].
  13. [13]
    GAMBIT Dark Matter Workgroup collaboration, T. Bringmann et al., DarkBit: A GAMBIT module for computing dark matter observables and likelihoods, arXiv:1705.07920 [INSPIRE].
  14. [14]
    GAMBIT collaboration, P. Athron et al., A global fit of the MSSM with GAMBIT, arXiv:1705.07917 [INSPIRE].
  15. [15]
    P. Gondolo and G. Gelmini, Cosmic abundances of stable particles: Improved analysis, Nucl. Phys. B 360 (1991) 145 [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    J. Edsjo and P. Gondolo, Neutralino relic density including coannihilations, Phys. Rev. D 56 (1997) 1879 [hep-ph/9704361] [INSPIRE].
  17. [17]
    M.W. Cahill-Rowley, J.L. Hewett, S. Hoeche, A. Ismail and T.G. Rizzo, The New Look pMSSM with Neutralino and Gravitino LSPs, Eur. Phys. J. C 72 (2012) 2156 [arXiv:1206.4321] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    A. Arbey, M. Battaglia, L. Covi, J. Hasenkamp and F. Mahmoudi, LHC constraints on Gravitino Dark Matter, Phys. Rev. D 92 (2015) 115008 [arXiv:1505.04595] [INSPIRE].ADSGoogle Scholar
  19. [19]
    M. Ibe, M. Suzuki and T.T. Yanagida, Revisiting gravitino dark matter in thermal leptogenesis, JHEP 02 (2017) 063 [arXiv:1609.06834] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    J. Hisano, S. Matsumoto, M. Nagai, O. Saito and M. Senami, Non-perturbative effect on thermal relic abundance of dark matter, Phys. Lett. B 646 (2007) 34 [hep-ph/0610249] [INSPIRE].
  21. [21]
    M. Cirelli, A. Strumia and M. Tamburini, Cosmology and Astrophysics of Minimal Dark Matter, Nucl. Phys. B 787 (2007) 152 [arXiv:0706.4071] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    J. Zavala, M. Vogelsberger and S.D.M. White, Relic density and CMB constraints on dark matter annihilation with Sommerfeld enhancement, Phys. Rev. D 81 (2010) 083502 [arXiv:0910.5221] [INSPIRE].ADSGoogle Scholar
  23. [23]
    A. Hryczuk, R. Iengo and P. Ullio, Relic densities including Sommerfeld enhancements in the MSSM, JHEP 03 (2011) 069 [arXiv:1010.2172] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  24. [24]
    A. Hryczuk and R. Iengo, The one-loop and Sommerfeld electroweak corrections to the Wino dark matter annihilation, JHEP 01 (2012) 163 [Erratum ibid. 06 (2012) 137] [arXiv:1111.2916] [INSPIRE].
  25. [25]
    A. Hryczuk, I. Cholis, R. Iengo, M. Tavakoli and P. Ullio, Indirect Detection Analysis: Wino Dark Matter Case Study, JCAP 07 (2014) 031 [arXiv:1401.6212] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    M. Beneke et al., Relic density of wino-like dark matter in the MSSM, JHEP 03 (2016) 119 [arXiv:1601.04718] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    M. Beneke, A. Bharucha, A. Hryczuk, S. Recksiegel and P. Ruiz-Femenia, The last refuge of mixed wino-Higgsino dark matter, JHEP 01 (2017) 002 [arXiv:1611.00804] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  28. [28]
    N. Baro, F. Boudjema and A. Semenov, Full one-loop corrections to the relic density in the MSSM: A Few examples, Phys. Lett. B 660 (2008) 550 [arXiv:0710.1821] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    N. Baro, F. Boudjema, G. Chalons and S. Hao, Relic density at one-loop with gauge boson pair production, Phys. Rev. D 81 (2010) 015005 [arXiv:0910.3293] [INSPIRE].ADSGoogle Scholar
  30. [30]
    J. Harz, B. Herrmann, M. Klasen, K. Kovarik and Q.L. Boulc’h, Neutralino-stop coannihilation into electroweak gauge and Higgs bosons at one loop, Phys. Rev. D 87 (2013) 054031 [arXiv:1212.5241] [INSPIRE].ADSGoogle Scholar
  31. [31]
    M. Hindmarsh and O. Philipsen, WIMP dark matter and the QCD equation of state, Phys. Rev. D 71 (2005) 087302 [hep-ph/0501232] [INSPIRE].
  32. [32]
    M. Laine and Y. Schröder, Quark mass thresholds in QCD thermodynamics, Phys. Rev. D 73 (2006) 085009 [hep-ph/0603048] [INSPIRE].
  33. [33]
    M. Drees, F. Hajkarim and E.R. Schmitz, The Effects of QCD Equation of State on the Relic Density of WIMP Dark Matter, JCAP 06 (2015) 025 [arXiv:1503.03513] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    M. Kamionkowski and M.S. Turner, Thermal relics: do we know their abundances?, Phys. Rev. D 42 (1990) 3310 [INSPIRE].ADSGoogle Scholar
  35. [35]
    P. Salati, Quintessence and the relic density of neutralinos, Phys. Lett. B 571 (2003) 121 [astro-ph/0207396] [INSPIRE].
  36. [36]
    S. Profumo and P. Ullio, SUSY dark matter and quintessence, JCAP 11 (2003) 006 [hep-ph/0309220] [INSPIRE].
  37. [37]
    D.J.H. Chung, L.L. Everett, K. Kong and K.T. Matchev, Connecting LHC, ILC and Quintessence, JHEP 10 (2007) 016 [arXiv:0706.2375] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    A. Arbey and F. Mahmoudi, SUSY constraints from relic density: High sensitivity to pre-BBN expansion rate, Phys. Lett. B 669 (2008) 46 [arXiv:0803.0741] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    T. Moroi and L. Randall, Wino cold dark matter from anomaly mediated SUSY breaking, Nucl. Phys. B 570 (2000) 455 [hep-ph/9906527] [INSPIRE].
  40. [40]
    G.F. Giudice, E.W. Kolb and A. Riotto, Largest temperature of the radiation era and its cosmological implications, Phys. Rev. D 64 (2001) 023508 [hep-ph/0005123] [INSPIRE].
  41. [41]
    N. Fornengo, A. Riotto and S. Scopel, Supersymmetric dark matter and the reheating temperature of the universe, Phys. Rev. D 67 (2003) 023514 [hep-ph/0208072] [INSPIRE].
  42. [42]
    G. Gelmini, P. Gondolo, A. Soldatenko and C.E. Yaguna, The effect of a late decaying scalar on the neutralino relic density, Phys. Rev. D 74 (2006) 083514 [hep-ph/0605016] [INSPIRE].
  43. [43]
    A. Arbey and F. Mahmoudi, SUSY Constraints, Relic Density and Very Early Universe, JHEP 05 (2010) 051 [arXiv:0906.0368] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  44. [44]
    O. Adriani et al., Measurement of the flux of primary cosmic ray antiprotons with energies of 60-MeV to 350-GeV in the PAMELA experiment, JETP Lett. 96 (2013) 621 [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    AMS collaboration, M. Aguilar et al., Antiproton Flux, Antiproton-to-Proton Flux Ratio and Properties of Elementary Particle Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station, Phys. Rev. Lett. 117 (2016) 091103 [INSPIRE].
  46. [46]
    A. Cuoco, M. Krämer and M. Korsmeier, Novel Dark Matter Constraints from Antiprotons in Light of AMS-02, Phys. Rev. Lett. 118 (2017) 191102 [arXiv:1610.03071] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    M.-Y. Cui, Q. Yuan, Y.-L.S. Tsai and Y.-Z. Fan, Possible dark matter annihilation signal in the AMS-02 antiproton data, Phys. Rev. Lett. 118 (2017) 191101 [arXiv:1610.03840] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    M. di Mauro, F. Donato, A. Goudelis and P.D. Serpico, New evaluation of the antiproton production cross section for cosmic ray studies, Phys. Rev. D 90 (2014) 085017 [arXiv:1408.0288] [INSPIRE].ADSGoogle Scholar
  49. [49]
    M.W. Winkler, Cosmic Ray Antiprotons at High Energies, JCAP 02 (2017) 048 [arXiv:1701.04866] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    M. Cirelli and G. Giesen, Antiprotons from Dark Matter: Current constraints and future sensitivities, JCAP 04 (2013) 015 [arXiv:1301.7079] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    C. Evoli, I. Cholis, D. Grasso, L. Maccione and P. Ullio, Antiprotons from dark matter annihilation in the Galaxy: astrophysical uncertainties, Phys. Rev. D 85 (2012) 123511 [arXiv:1108.0664] [INSPIRE].ADSGoogle Scholar
  52. [52]
    F. Donato, D. Maurin, P. Salati, A. Barrau, G. Boudoul and R. Taillet, Anti-protons from spallations of cosmic rays on interstellar matter, Astrophys. J. 563 (2001) 172 [astro-ph/0103150] [INSPIRE].
  53. [53]
    F. Donato, N. Fornengo, D. Maurin and P. Salati, Antiprotons in cosmic rays from neutralino annihilation, Phys. Rev. D 69 (2004) 063501 [astro-ph/0306207] [INSPIRE].
  54. [54]
    G. Giesen et al., AMS-02 antiprotons, at last! Secondary astrophysical component and immediate implications for Dark Matter, JCAP 09 (2015) 023 [arXiv:1504.04276] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    C. Evoli, D. Gaggero and D. Grasso, Secondary antiprotons as a Galactic Dark Matter probe, JCAP 12 (2015) 039 [arXiv:1504.05175] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    AMS collaboration, M. Aguilar et al., Electron and Positron Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station, Phys. Rev. Lett. 113 (2014) 121102 [INSPIRE].
  57. [57]
    H.E.S.S. collaboration, H. Abdallah et al., Search for dark matter annihilations towards the inner Galactic halo from 10 years of observations with H.E.S.S, Phys. Rev. Lett. 117 (2016)111301 [arXiv:1607.08142] [INSPIRE].
  58. [58]
    J. Aleksić et al., Optimized dark matter searches in deep observations of Segue 1 with MAGIC, JCAP 02 (2014) 008 [arXiv:1312.1535] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    VERITAS collaboration, E. Aliu et al., VERITAS Deep Observations of the Dwarf Spheroidal Galaxy Segue 1, Phys. Rev. D 85 (2012) 062001 [Erratum ibid. D 91 (2015) 129903] [arXiv:1202.2144] [INSPIRE].
  60. [60]
    HAWC collaboration, A. Albert et al., Dark Matter Limits From Dwarf Spheroidal Galaxies with The HAWC Gamma-Ray Observatory, arXiv:1706.01277 [INSPIRE].
  61. [61]
    D. Hooper and L. Goodenough, Dark Matter Annihilation in The Galactic Center As Seen by the Fermi Gamma Ray Space Telescope, Phys. Lett. B 697 (2011) 412 [arXiv:1010.2752] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    D. Hooper and T. Linden, On The Origin Of The Gamma Rays From The Galactic Center, Phys. Rev. D 84 (2011) 123005 [arXiv:1110.0006] [INSPIRE].ADSGoogle Scholar
  63. [63]
    T. Daylan et al., The characterization of the gamma-ray signal from the central Milky Way: A case for annihilating dark matter, Phys. Dark Univ. 12 (2016) 1 [arXiv:1402.6703] [INSPIRE].CrossRefGoogle Scholar
  64. [64]
    K.N. Abazajian, N. Canac, S. Horiuchi and M. Kaplinghat, Astrophysical and Dark Matter Interpretations of Extended Gamma-Ray Emission from the Galactic Center, Phys. Rev. D 90 (2014) 023526 [arXiv:1402.4090] [INSPIRE].ADSGoogle Scholar
  65. [65]
    T. Lacroix, C. Boehm and J. Silk, Fitting the Fermi-LAT GeV excess: On the importance of including the propagation of electrons from dark matter, Phys. Rev. D 90 (2014) 043508 [arXiv:1403.1987] [INSPIRE].ADSGoogle Scholar
  66. [66]
    F. Calore, I. Cholis, C. McCabe and C. Weniger, A Tale of Tails: Dark Matter Interpretations of the Fermi GeV Excess in Light of Background Model Systematics, Phys. Rev. D 91 (2015) 063003 [arXiv:1411.4647] [INSPIRE].ADSGoogle Scholar
  67. [67]
    S.K. Lee, M. Lisanti and B.R. Safdi, Distinguishing Dark Matter from Unresolved Point Sources in the Inner Galaxy with Photon Statistics, JCAP 05 (2015) 056 [arXiv:1412.6099] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  68. [68]
    J. Petrović, P.D. Serpico and G. Zaharijaš, Galactic Center gamma-ray “excess” from an active past of the Galactic Centre?, JCAP 10 (2014) 052 [arXiv:1405.7928] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    J.F. Navarro, C.S. Frenk and S.D.M. White, The structure of cold dark matter halos, Astrophys. J. 462 (1996) 563 [astro-ph/9508025] [INSPIRE].
  70. [70]
    J.F. Navarro et al., The Diversity and Similarity of Cold Dark Matter Halos, Mon. Not. Roy. Astron. Soc. 402 (2010) 21 [arXiv:0810.1522] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    A. Burkert, The structure of dark matter halos in dwarf galaxies, IAU Symp. 171 (1996) 175 [astro-ph/9504041] [INSPIRE].
  72. [72]
    P.J. McMillan, Mass models of the Milky Way, Mon. Not. Roy. Astron. Soc. 414 (2011) 2446 [arXiv:1102.4340] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    R. Catena and P. Ullio, A novel determination of the local dark matter density, JCAP 08 (2010) 004 [arXiv:0907.0018] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    F. Nesti and P. Salucci, The Dark Matter halo of the Milky Way, AD 2013, JCAP 07 (2013) 016 [arXiv:1304.5127] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    M. Boudaud, M. Cirelli, G. Giesen and P. Salati, A fussy revisitation of antiprotons as a tool for Dark Matter searches, JCAP 05 (2015) 013 [arXiv:1412.5696] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    D. Maurin, F. Donato, R. Taillet and P. Salati, Cosmic rays below z=30 in a diffusion model: new constraints on propagation parameters, Astrophys. J. 555 (2001) 585 [astro-ph/0101231] [INSPIRE].
  77. [77]
    G. Di Bernardo, C. Evoli, D. Gaggero, D. Grasso and L. Maccione, Cosmic Ray Electrons, Positrons and the Synchrotron emission of the Galaxy: consistent analysis and implications, JCAP 03 (2013) 036 [arXiv:1210.4546] [INSPIRE].CrossRefGoogle Scholar
  78. [78]
    T. Bringmann, F. Donato and R.A. Lineros, Radio data and synchrotron emission in consistent cosmic ray models, JCAP 01 (2012) 049 [arXiv:1106.4821] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    E. Orlando and A. Strong, Galactic synchrotron emission with cosmic ray propagation models, Mon. Not. Roy. Astron. Soc. 436 (2013) 2127 [arXiv:1309.2947] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    N. Fornengo, R.A. Lineros, M. Regis and M. Taoso, The isotropic radio background revisited, JCAP 04 (2014) 008 [arXiv:1402.2218] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    M. Di Mauro, F. Donato, N. Fornengo, R. Lineros and A. Vittino, Interpretation of AMS-02 electrons and positrons data, JCAP 04 (2014) 006 [arXiv:1402.0321] [INSPIRE].CrossRefGoogle Scholar
  82. [82]
    Fermi-LAT collaboration, M. Ackermann et al., Fermi-LAT Observations of the Diffuse Gamma-Ray Emission: Implications for Cosmic Rays and the Interstellar Medium, Astrophys. J. 750 (2012) 3 [arXiv:1202.4039] [INSPIRE].
  83. [83]
    J. Lavalle, D. Maurin and A. Putze, Direct constraints on diffusion models from cosmic-ray positron data: Excluding the minimal model for dark matter searches, Phys. Rev. D 90 (2014) 081301 [arXiv:1407.2540] [INSPIRE].ADSGoogle Scholar
  84. [84]
    M. Boudaud et al., The pinching method for Galactic cosmic ray positrons: implications in the light of precision measurements, Astron. Astrophys. 605 (2017) A17 [arXiv:1612.03924] [INSPIRE].CrossRefGoogle Scholar
  85. [85]
    L.A. Fisk, Solar modulation of galactic cosmic rays, 2, J. Geophys. Res. 76 (1971) 221.ADSCrossRefGoogle Scholar
  86. [86]
    J.D. Lewin and P.F. Smith, Review of mathematics, numerical factors and corrections for dark matter experiments based on elastic nuclear recoil, Astropart. Phys. 6 (1996) 87 [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    P. Klos, J. Menéndez, D. Gazit and A. Schwenk, Large-scale nuclear structure calculations for spin-dependent WIMP scattering with chiral effective field theory currents, Phys. Rev. D 88 (2013) 083516 [Erratum ibid. D 89 (2014) 029901] [arXiv:1304.7684] [INSPIRE].
  88. [88]
    XENON collaboration, E. Aprile et al., First Dark Matter Search Results from the XENON1T Experiment, Phys. Rev. Lett. 119 (2017) 181301 [arXiv:1705.06655] [INSPIRE].
  89. [89]
    PandaX-II collaboration, X. Cui et al., Dark Matter Results From 54-Ton-Day Exposure of PandaX-II Experiment, Phys. Rev. Lett. 119 (2017) 181302 [arXiv:1708.06917] [INSPIRE].
  90. [90]
    DarkSide collaboration, P. Agnes et al., Results from the first use of low radioactivity argon in a dark matter search, Phys. Rev. D 93 (2016) 081101 [Addendum ibid. D 95 (2017)069901] [arXiv:1510.00702] [INSPIRE].
  91. [91]
    LUX collaboration, D.S. Akerib et al., Limits on spin-dependent WIMP-nucleon cross section obtained from the complete LUX exposure, Phys. Rev. Lett. 118 (2017) 251302 [arXiv:1705.03380] [INSPIRE].
  92. [92]
    PICO collaboration, C. Amole et al., Dark Matter Search Results from the PICO-60 C 3 F 8 Bubble Chamber, Phys. Rev. Lett. 118 (2017) 251301 [arXiv:1702.07666] [INSPIRE].
  93. [93]
    IceCube collaboration, M.G. Aartsen et al., Search for annihilating dark matter in the Sun with 3 years of IceCube data, Eur. Phys. J. C 77 (2017) 146 [arXiv:1612.05949] [INSPIRE].
  94. [94]
    XENON collaboration, E. Aprile et al., Physics reach of the XENON1T dark matter experiment, JCAP 04 (2016) 027 [arXiv:1512.07501] [INSPIRE].
  95. [95]
    LZ collaboration, D.S. Akerib et al., LUX-ZEPLIN (LZ) Conceptual Design Report, arXiv:1509.02910 [INSPIRE].
  96. [96]
    DARWIN collaboration, J. Aalbers et al., DARWIN: towards the ultimate dark matter detector, JCAP 11 (2016) 017 [arXiv:1606.07001] [INSPIRE].
  97. [97]
    P.J. McMillan, The mass distribution and gravitational potential of the Milky Way, Mon. Not. Roy. Astron. Soc. 465 (2017) 76 [arXiv:1608.00971].ADSCrossRefGoogle Scholar
  98. [98]
    J.I. Read, The Local Dark Matter Density, J. Phys. G 41 (2014) 063101 [arXiv:1404.1938] [INSPIRE].ADSCrossRefGoogle Scholar
  99. [99]
    K. Freese, J.A. Frieman and A. Gould, Signal Modulation in Cold Dark Matter Detection, Phys. Rev. D 37 (1988) 3388 [INSPIRE].ADSGoogle Scholar
  100. [100]
    A.K. Drukier, K. Freese and D.N. Spergel, Detecting Cold Dark Matter Candidates, Phys. Rev. D 33 (1986) 3495 [INSPIRE].ADSGoogle Scholar
  101. [101]
    M.J. Reid et al., Trigonometric Parallaxes of Massive Star Forming Regions: VI. Galactic Structure, Fundamental Parameters and Non-Circular Motions, Astrophys. J. 700 (2009) 137 [arXiv:0902.3913] [INSPIRE].
  102. [102]
    P.J. McMillan and J.J. Binney, The uncertainty in Galactic parameters, Mon. Not. Roy. Astron. Soc. 402 (2010) 934 [arXiv:0907.4685] [INSPIRE].ADSCrossRefGoogle Scholar
  103. [103]
    J. Bovy, D.W. Hogg and H.-W. Rix, Galactic masers and the Milky Way circular velocity, Astrophys. J. 704 (2009) 1704 [arXiv:0907.5423] [INSPIRE].ADSCrossRefGoogle Scholar
  104. [104]
    M.C. Smith et al., The RAVE Survey: Constraining the Local Galactic Escape Speed, Mon. Not. Roy. Astron. Soc. 379 (2007) 755 [astro-ph/0611671] [INSPIRE].
  105. [105]
    I.R. King, Ths structure of star clusters. 3. Some simple dynamical models, Astron. J. 71 (1966) 64 [INSPIRE].
  106. [106]
    S. Chaudhury, P. Bhattacharjee and R. Cowsik, Direct detection of WIMPs: Implications of a self-consistent truncated isothermal model of the Milky Way’s dark matter halo, JCAP 09 (2010) 020 [arXiv:1006.5588] [INSPIRE].
  107. [107]
    N.W. Evans, C.M. Carollo and P.T. de Zeeuw, Triaxial haloes and particle dark matter detection, Mon. Not. Roy. Astron. Soc. 318 (2000) 1131 [astro-ph/0008156] [INSPIRE].
  108. [108]
    A. Chakraborty, B. Das, J.L. Diaz-Cruz, D.K. Ghosh, S. Moretti and P. Poulose, 125 GeV Higgs signal at the LHC in the CP-violating MSSM, Phys. Rev. D 90 (2014) 055005 [arXiv:1301.2745] [INSPIRE].ADSGoogle Scholar
  109. [109]
    A. Arbey, J. Ellis, R.M. Godbole and F. Mahmoudi, Exploring CP-violation in the MSSM, Eur. Phys. J. C 75 (2015) 85 [arXiv:1410.4824] [INSPIRE].ADSCrossRefGoogle Scholar
  110. [110]
    J. Berger, M.W. Cahill-Rowley, D. Ghosh, J.L. Hewett, A. Ismail and T.G. Rizzo, CP-violating phenomenological MSSM, Phys. Rev. D 93 (2016) 035017 [arXiv:1510.08840] [INSPIRE].
  111. [111]
    A. Arbey, M. Battaglia and F. Mahmoudi, Implications of LHC Searches on SUSY Particle Spectra: The pMSSM Parameter Space with Neutralino Dark Matter, Eur. Phys. J. C 72 (2012) 1847 [arXiv:1110.3726] [INSPIRE].ADSCrossRefGoogle Scholar
  112. [112]
    A. Arbey, M. Battaglia and F. Mahmoudi, Constraints on the MSSM from the Higgs Sector: A pMSSM Study of Higgs Searches, B s0 → μ + μ and Dark Matter Direct Detection, Eur. Phys. J. C 72 (2012) 1906 [arXiv:1112.3032] [INSPIRE].ADSCrossRefGoogle Scholar
  113. [113]
    A. Arbey, M. Battaglia and F. Mahmoudi, Light Neutralino Dark Matter in the pMSSM: Implications of LEP, LHC and Dark Matter Searches on SUSY Particle Spectra, Eur. Phys. J. C 72 (2012) 2169 [arXiv:1205.2557] [INSPIRE].ADSCrossRefGoogle Scholar
  114. [114]
    G. Bélanger, G. Drieu La Rochelle, B. Dumont, R.M. Godbole, S. Kraml and S. Kulkarni, LHC constraints on light neutralino dark matter in the MSSM, Phys. Lett. B 726 (2013) 773 [arXiv:1308.3735] [INSPIRE].ADSCrossRefGoogle Scholar
  115. [115]
    C. Boehm, P.S.B. Dev, A. Mazumdar and E. Pukartas, Naturalness of Light Neutralino Dark Matter in pMSSM after LHC, XENON100 and Planck Data, JHEP 06 (2013) 113 [arXiv:1303.5386] [INSPIRE].ADSCrossRefGoogle Scholar
  116. [116]
    A. Arbey, M. Battaglia and F. Mahmoudi, Supersymmetry with Light Dark Matter confronting the recent CDMS and LHC Results, Phys. Rev. D 88 (2013) 095001 [arXiv:1308.2153] [INSPIRE].ADSGoogle Scholar
  117. [117]
    B.C. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra, Comput. Phys. Commun. 143 (2002) 305 [hep-ph/0104145] [INSPIRE].
  118. [118]
    GAMBIT collaboration, F.U. Bernlochner et al., FlavBit: A GAMBIT module for computing flavour observables and likelihoods, arXiv:1705.07933 [INSPIRE].
  119. [119]
    GAMBIT collaboration, G.D. Martinez et al., Comparison of statistical sampling methods with ScannerBit, the GAMBIT scanning module, Eur. Phys. J. C 77 (2017) 761 [arXiv:1705.07959] [INSPIRE].
  120. [120]
    Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  121. [121]
    A. Djouadi, The Anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [INSPIRE].
  122. [122]
    A. Arbey, M. Battaglia, A. Djouadi and F. Mahmoudi, The Higgs sector of the phenomenological MSSM in the light of the Higgs boson discovery, JHEP 09 (2012) 107 [arXiv:1207.1348] [INSPIRE].ADSCrossRefGoogle Scholar
  123. [123]
    A. Arbey, M. Battaglia, A. Djouadi and F. Mahmoudi, An update on the constraints on the phenomenological MSSM from the new LHC Higgs results, Phys. Lett. B 720 (2013) 153 [arXiv:1211.4004] [INSPIRE].ADSCrossRefGoogle Scholar
  124. [124]
    A. Djouadi, Precision Higgs coupling measurements at the LHC through ratios of production cross sections, Eur. Phys. J. C 73 (2013) 2498 [arXiv:1208.3436] [INSPIRE].ADSCrossRefGoogle Scholar
  125. [125]
    M. Chakraborti, U. Chattopadhyay, A. Choudhury, A. Datta and S. Poddar, The Electroweak Sector of the pMSSM in the Light of LHC — 8 TeV and Other Data, JHEP 07 (2014) 019 [arXiv:1404.4841] [INSPIRE].
  126. [126]
    M. Chakraborti, U. Chattopadhyay and S. Poddar, How light a higgsino or a wino dark matter can become in a compressed scenario of MSSM, JHEP 09 (2017) 064 [arXiv:1702.03954] [INSPIRE].ADSCrossRefGoogle Scholar
  127. [127]
    C.-S. Huang, W. Liao and Q.-S. Yan, The Promising process to distinguish supersymmetric models with large tan β from the standard model: BX s μ + μ , Phys. Rev. D 59 (1999) 011701 [hep-ph/9803460] [INSPIRE].
  128. [128]
    K.S. Babu and C.F. Kolda, Higgs mediated B 0μ + μ in minimal supersymmetry, Phys. Rev. Lett. 84 (2000) 228 [hep-ph/9909476] [INSPIRE].
  129. [129]
    J.R. Ellis, K.A. Olive and V.C. Spanos, On the interpretation of B sμ + μ in the CMSSM, Phys. Lett. B 624 (2005) 47 [hep-ph/0504196] [INSPIRE].
  130. [130]
    D. Eriksson, F. Mahmoudi and O. Stal, Charged Higgs bosons in Minimal Supersymmetry: Updated constraints and experimental prospects, JHEP 11 (2008) 035 [arXiv:0808.3551] [INSPIRE].ADSCrossRefGoogle Scholar
  131. [131]
    A. Arbey, M. Battaglia, F. Mahmoudi and D. Martínez Santos, Supersymmetry confronts B sμ + μ : Present and future status, Phys. Rev. D 87 (2013) 035026 [arXiv:1212.4887] [INSPIRE].
  132. [132]
    F. Mahmoudi, SuperIso: A Program for calculating the isospin asymmetry of BK * γ in the MSSM, Comput. Phys. Commun. 178 (2008) 745 [arXiv:0710.2067] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  133. [133]
    F. Mahmoudi, SuperIso v2.3: A program for calculating flavor physics observables in Supersymmetry, Comput. Phys. Commun. 180 (2009) 1579 [arXiv:0808.3144] [INSPIRE].
  134. [134]
    F. Mahmoudi, SuperIso v3.0, flavor physics observables calculations: Extension to NMSSM, Comput. Phys. Commun. 180 (2009) 1718 [INSPIRE].
  135. [135]
    LHCb collaboration, Measurement of the B s0 → μ + μ branching fraction and effective lifetime and search for B 0μ + μ decays, Phys. Rev. Lett. 118 (2017) 191801 [arXiv:1703.05747] [INSPIRE].
  136. [136]
    Y. Amhis et al., Averages of b-hadron, c-hadron and τ-lepton properties as of summer 2016, arXiv:1612.07233 [INSPIRE].
  137. [137]
    ATLAS, CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s}=7 \) and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE].
  138. [138]
    B.C. Allanach, A. Djouadi, J.L. Kneur, W. Porod and P. Slavich, Precise determination of the neutral Higgs boson masses in the MSSM, JHEP 09 (2004) 044 [hep-ph/0406166] [INSPIRE].
  139. [139]
    U. Haisch and F. Mahmoudi, MSSM: Cornered and Correlated, JHEP 01 (2013) 061 [arXiv:1210.7806] [INSPIRE].ADSCrossRefGoogle Scholar
  140. [140]
    A. Djouadi, J. Kalinowski and M. Spira, HDECAY: A Program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56 [hep-ph/9704448] [INSPIRE].
  141. [141]
    R.V. Harlander, S. Liebler and H. Mantler, SusHi: A program for the calculation of Higgs production in gluon fusion and bottom-quark annihilation in the Standard Model and the MSSM, Comput. Phys. Commun. 184 (2013) 1605 [arXiv:1212.3249] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  142. [142]
  143. [143]
    A. Arbey, S. Fichet, F. Mahmoudi and G. Moreau, The correlation matrix of Higgs rates at the LHC, JHEP 11 (2016) 097 [arXiv:1606.00455] [INSPIRE].ADSCrossRefGoogle Scholar
  144. [144]
    ATLAS collaboration, Summary of the searches for squarks and gluinos using \( \sqrt{s}=8 \) TeV pp collisions with the ATLAS experiment at the LHC, JHEP 10 (2015) 054 [arXiv:1507.05525] [INSPIRE].
  145. [145]
    ATLAS collaboration, Further searches for squarks and gluinos in final states with jets and missing transverse momentum at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-078 (2016).
  146. [146]
    ATLAS collaboration, Search for squarks and gluinos in final states with jets and missing transverse momentum using 36 fb −1 of \( \sqrt{s}=13 \) TeV pp collision data with the ATLAS detector, ATLAS-CONF-2017-022 (2017).
  147. [147]
    ATLAS collaboration, Pursuit of new phenomena in final states with high jet multiplicity, high jet masses and missing transverse momentum with ATLAS at \( \sqrt{s}=13 \) TeV, ATLAS-CONF-2016-095 (2016).
  148. [148]
    ATLAS collaboration, Search for new phenomena with large jet multiplicities and missing transverse momentum using large-radius jets and flavour-tagging at ATLAS in 13 TeV pp collisions, ATLAS-CONF-2017-033 (2017).
  149. [149]
    ATLAS collaboration, Search for squarks and gluinos in events with an isolated lepton, jets and missing transverse momentum at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-054 (2016).
  150. [150]
    ATLAS collaboration, Search for the electroweak production of supersymmetric particles in \( \sqrt{s}=8 \) TeV pp collisions with the ATLAS detector, Phys. Rev. D 93 (2016) 052002 [arXiv:1509.07152] [INSPIRE].
  151. [151]
    ATLAS collaboration, Search for supersymmetry with two and three leptons and missing transverse momentum in the final state at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-096 (2016).
  152. [152]
    ATLAS collaboration, Search for electroweak production of supersymmetric particles in the two and three lepton final state at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2017-039 (2017).
  153. [153]
    ATLAS collaboration, ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider, Eur. Phys. J. C 75 (2015) 510 [Erratum ibid. C 76 (2015) 153] [arXiv:1506.08616] [INSPIRE].
  154. [154]
    ATLAS collaboration, Search for the Supersymmetric Partner of the Top Quark in the Jets+Emiss Final State at \( \sqrt{s}=13 \) TeV, ATLAS-CONF-2016-077 (2016).
  155. [155]
    ATLAS collaboration, Search for a Scalar Partner of the Top Quark in the Jets+ETmiss Final State at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2017-020 (2017).
  156. [156]
    ATLAS collaboration, Search for top squarks in final states with one isolated lepton, jets and missing transverse momentum in \( \sqrt{s}=13 \) TeV pp collisions with the ATLAS detector, ATLAS-CONF-2016-050 (2016).
  157. [157]
    ATLAS collaboration, Search for direct top squark pair production and dark matter production in final states with two leptons in \( \sqrt{s}=13 \) TeV pp collisions using 13.3 fb −1 of ATLAS data, ATLAS-CONF-2016-076 (2016).
  158. [158]
    ATLAS collaboration, Search for direct top squark pair production in final states with two leptons in \( \sqrt{s}=13 \) TeV pp collisions with the ATLAS detector, ATLAS-CONF-2017-034 (2017).
  159. [159]
    ATLAS collaboration, Search for bottom squark pair production in proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Eur. Phys. J. C 76 (2016) 547 [arXiv:1606.08772] [INSPIRE].
  160. [160]
    ATLAS collaboration, Search for Supersymmetry in events with b-tagged jets and missing transverse energy in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2017-038 (2017).
  161. [161]
    ATLAS collaboration, Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 75 (2015) 299 [Erratum ibid. C 75 (2015) 408] [arXiv:1502.01518] [INSPIRE].
  162. [162]
    ATLAS collaboration, Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at \( \sqrt{s}=13 \) TeV using the ATLAS detector, Phys. Rev. D 94 (2016) 032005 [arXiv:1604.07773] [INSPIRE].
  163. [163]
    ATLAS collaboration, Search for dark matter in events with a hadronically decaying W or Z boson and missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. Lett. 112 (2014) 041802 [arXiv:1309.4017] [INSPIRE].
  164. [164]
    ATLAS collaboration, Search for dark matter produced in association with a hadronically decaying vector boson in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector at the LHC, ATLAS-CONF-2015-080 (2015).
  165. [165]
    L. Maiani, A.D. Polosa and V. Riquer, Probing Minimal Supersymmetry at the LHC with the Higgs Boson Masses, New J. Phys. 14 (2012) 073029 [arXiv:1202.5998] [INSPIRE].ADSCrossRefGoogle Scholar
  166. [166]
    A. Arbey, M. Battaglia and F. Mahmoudi, Supersymmetric Heavy Higgs Bosons at the LHC, Phys. Rev. D 88 (2013) 015007 [arXiv:1303.7450] [INSPIRE].ADSGoogle Scholar
  167. [167]
    N.D. Christensen, T. Han and S. Su, MSSM Higgs Bosons at The LHC, Phys. Rev. D 85 (2012) 115018 [arXiv:1203.3207] [INSPIRE].
  168. [168]
    T. Han, T. Li, S. Su and L.-T. Wang, Non-Decoupling MSSM Higgs Sector and Light Superpartners, JHEP 11 (2013) 053 [arXiv:1306.3229] [INSPIRE].ADSCrossRefGoogle Scholar
  169. [169]
    P. Bechtle, S. Heinemeyer, O. St al, T. Stefaniak and G. Weiglein, Probing the Standard Model with Higgs signal rates from the Tevatron, the LHC and a future ILC, JHEP 11 (2014) 039 [arXiv:1403.1582] [INSPIRE].
  170. [170]
    CMS collaboration, Search for a neutral MSSM Higgs boson decaying into ττ with 12.9 fb −1 of data at \( \sqrt{s}=13 \) TeV, CMS-PAS-HIG-16-037 (2016).
  171. [171]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
  172. [172]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].
  173. [173]
    J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P.M. Nadolsky and W.K. Tung, New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].
  174. [174]
    DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
  175. [175]
    A.L. Read, Presentation of search results: The CL s technique, J. Phys. G 28 (2002) 2693 [INSPIRE].ADSCrossRefGoogle Scholar
  176. [176]
    J. Goodman, M. Ibe, A. Rajaraman, W. Shepherd, T.M.P. Tait and H.-B. Yu, Constraints on Dark Matter from Colliders, Phys. Rev. D 82 (2010) 116010 [arXiv:1008.1783] [INSPIRE].ADSGoogle Scholar
  177. [177]
    J. Goodman, M. Ibe, A. Rajaraman, W. Shepherd, T.M.P. Tait and H.-B. Yu, Constraints on Light Majorana dark Matter from Colliders, Phys. Lett. B 695 (2011) 185 [arXiv:1005.1286] [INSPIRE].ADSCrossRefGoogle Scholar
  178. [178]
    LHC New Physics Working Group collaboration, D. Alves, Simplified Models for LHC New Physics Searches, J. Phys. G 39 (2012) 105005 [arXiv:1105.2838] [INSPIRE].
  179. [179]
    J. Abdallah et al., Simplified Models for Dark Matter Searches at the LHC, Phys. Dark Univ. 9-10 (2015) 8 [arXiv:1506.03116] [INSPIRE].
  180. [180]
    B.C. Allanach, S. Grab and H.E. Haber, Supersymmetric Monojets at the Large Hadron Collider, JHEP 01 (2011) 138 [Erratum ibid. 07 (2011) 087] [arXiv:1010.4261] [INSPIRE].
  181. [181]
    M. Drees, M. Hanussek and J.S. Kim, Light Stop Searches at the LHC with Monojet Events, Phys. Rev. D 86 (2012) 035024 [arXiv:1201.5714] [INSPIRE].ADSGoogle Scholar
  182. [182]
    G. Cullen, N. Greiner and G. Heinrich, Susy-QCD corrections to neutralino pair production in association with a jet, Eur. Phys. J. C 73 (2013) 2388 [arXiv:1212.5154] [INSPIRE].ADSCrossRefGoogle Scholar
  183. [183]
    A. Arbey, M. Battaglia and F. Mahmoudi, Combining monojet, supersymmetry and dark matter searches, Phys. Rev. D 89 (2014) 077701 [arXiv:1311.7641] [INSPIRE].ADSGoogle Scholar
  184. [184]
    A. Arbey, M. Battaglia and F. Mahmoudi, Monojet Searches for MSSM Simplified Models, Phys. Rev. D 94 (2016) 055015 [arXiv:1506.02148] [INSPIRE].ADSGoogle Scholar
  185. [185]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  186. [186]
    H. Dreiner, M. Krämer and J. Tattersall, Exploring QCD uncertainties when setting limits on compressed supersymmetric spectra, Phys. Rev. D 87 (2013) 035006 [arXiv:1211.4981] [INSPIRE].ADSGoogle Scholar
  187. [187]
    H. Baer, A. Mustafayev and X. Tata, Monojets and mono-photons from light higgsino pair production at LHC14, Phys. Rev. D 89 (2014) 055007 [arXiv:1401.1162] [INSPIRE].ADSGoogle Scholar
  188. [188]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs: A Program for calculating the relic density in the MSSM, Comput. Phys. Commun. 149 (2002) 103 [hep-ph/0112278] [INSPIRE].
  189. [189]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 2.0: A Program to calculate the relic density of dark matter in a generic model, Comput. Phys. Commun. 176 (2007) 367 [hep-ph/0607059] [INSPIRE].
  190. [190]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 3: A program for calculating dark matter observables, Comput. Phys. Commun. 185 (2014) 960 [arXiv:1305.0237] [INSPIRE].ADSCrossRefGoogle Scholar
  191. [191]
    M. Cirelli et al., PPPC 4 DM ID: A Poor Particle Physicist Cookbook for Dark Matter Indirect Detection, JCAP 03 (2011) 051 [Erratum ibid. 10 (2012) E01] [arXiv:1012.4515] [INSPIRE].
  192. [192]
    PAMELA collaboration, O. Adriani et al., PAMELA Measurements of Cosmic-ray Proton and Helium Spectra, Science 332 (2011) 69 [arXiv:1103.4055] [INSPIRE].
  193. [193]
    AMS collaboration, M. Aguilar et al., Precision Measurement of the Proton Flux in Primary Cosmic Rays from Rigidity 1 GV to 1.8 TV with the Alpha Magnetic Spectrometer on the International Space Station, Phys. Rev. Lett. 114 (2015) 171103 [INSPIRE].
  194. [194]
    AMS collaboration, M. Aguilar et al., Precision Measurement of the Helium Flux in Primary Cosmic Rays of Rigidities 1.9 GV to 3 TV with the Alpha Magnetic Spectrometer on the International Space Station, Phys. Rev. Lett. 115 (2015) 211101 [INSPIRE].
  195. [195]
    AMS collaboration, M. Aguilar et al., Precision Measurement of the Boron to Carbon Flux Ratio in Cosmic Rays from 1.9 GV to 2.6 TV with the Alpha Magnetic Spectrometer on the International Space Station, Phys. Rev. Lett. 117 (2016) 231102 [INSPIRE].
  196. [196]
    DES, Fermi-LAT collaborations, A. Albert et al., Searching for Dark Matter Annihilation in Recently Discovered Milky Way Satellites with Fermi-LAT, Astrophys. J. 834 (2017) 110 [arXiv:1611.03184] [INSPIRE].
  197. [197]
    P. Ciafaloni, D. Comelli, A. Riotto, F. Sala, A. Strumia and A. Urbano, Weak Corrections are Relevant for Dark Matter Indirect Detection, JCAP 03 (2011) 019 [arXiv:1009.0224] [INSPIRE].ADSCrossRefGoogle Scholar
  198. [198]
    Fermi-LAT, https://www-glast.stanford.edu/pub data/1203/.
  199. [199]
    Fermi-LAT collaboration, M. Ackermann et al., Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies with Six Years of Fermi Large Area Telescope Data, Phys. Rev. Lett. 115 (2015) 231301 [arXiv:1503.02641] [INSPIRE].
  200. [200]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, Dark matter direct detection rate in a generic model with MicrOMEGAs 2.2, Comput. Phys. Commun. 180 (2009) 747 [arXiv:0803.2360] [INSPIRE].
  201. [201]
    A. Arbey and F. Mahmoudi, SuperIso Relic: A program for calculating relic density and flavor physics observables in Supersymmetry, Comput. Phys. Commun. 181 (2010) 1277 [arXiv:0906.0369] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  202. [202]
    A. Arbey and F. Mahmoudi, SuperIso Relic v3.0: A program for calculating relic density and flavour physics observables: Extension to NMSSM, Comput. Phys. Commun. 182 (2011) 1582 [INSPIRE].
  203. [203]
    A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi and J. Quevillon, Implications of a 125 GeV Higgs for supersymmetric models, Phys. Lett. B 708 (2012) 162 [arXiv:1112.3028] [INSPIRE].ADSCrossRefGoogle Scholar
  204. [204]
    P. Bechtle, S. Heinemeyer, O. Stal, T. Stefaniak, G. Weiglein and L. Zeune, MSSM Interpretations of the LHC Discovery: Light or Heavy Higgs?, Eur. Phys. J. C 73 (2013) 2354 [arXiv:1211.1955] [INSPIRE].ADSCrossRefGoogle Scholar
  205. [205]
    M.W. Cahill-Rowley, J.L. Hewett, A. Ismail and T.G. Rizzo, The Higgs Sector and Fine-Tuning in the pMSSM, Phys. Rev. D 86 (2012) 075015 [arXiv:1206.5800] [INSPIRE].ADSGoogle Scholar
  206. [206]
    M. Carena, S. Gori, N.R. Shah and C.E.M. Wagner, A 125 GeV SM-like Higgs in the MSSM and the γγ rate, JHEP 03 (2012) 014 [arXiv:1112.3336] [INSPIRE].ADSCrossRefGoogle Scholar
  207. [207]
    M. Carena, S. Gori, N.R. Shah, C.E.M. Wagner and L.-T. Wang, Light Stau Phenomenology and the Higgs γγ Rate, JHEP 07 (2012) 175 [arXiv:1205.5842] [INSPIRE].ADSCrossRefGoogle Scholar
  208. [208]
    R. Benbrik, M. Gomez Bock, S. Heinemeyer, O. Stal, G. Weiglein and L. Zeune, Confronting the MSSM and the NMSSM with the Discovery of a Signal in the two Photon Channel at the LHC, Eur. Phys. J. C 72 (2012) 2171 [arXiv:1207.1096] [INSPIRE].ADSCrossRefGoogle Scholar
  209. [209]
    T.J. LeCompte and S.P. Martin, Large Hadron Collider reach for supersymmetric models with compressed mass spectra, Phys. Rev. D 84 (2011) 015004 [arXiv:1105.4304] [INSPIRE].ADSGoogle Scholar
  210. [210]
    T.J. LeCompte and S.P. Martin, Compressed supersymmetry after 1/fb at the Large Hadron Collider, Phys. Rev. D 85 (2012) 035023 [arXiv:1111.6897] [INSPIRE].ADSGoogle Scholar
  211. [211]
    B. Bhattacherjee and K. Ghosh, Degenerate SUSY search at the 8 TeV LHC, arXiv:1207.6289 [INSPIRE].
  212. [212]
    H.K. Dreiner, M. Krämer and J. Tattersall, How low can SUSY go? Matching, monojets and compressed spectra, EPL 99 (2012) 61001 [arXiv:1207.1613] [INSPIRE].ADSCrossRefGoogle Scholar
  213. [213]
    CTA collaboration, J. Carr et al., Prospects for Indirect Dark Matter Searches with the Cherenkov Telescope Array (CTA), PoS(ICRC2015)1203 [arXiv:1508.06128] [INSPIRE].
  214. [214]
    J. Silk, Challenges in Cosmology from the Big Bang to Dark Energy, Dark Matter and Galaxy Formation, JPS Conf. Proc. 14 (2017) 010101 [arXiv:1611.09846] [INSPIRE].Google Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • A. Arbey
    • 1
    • 2
    • 3
    • 5
  • M. Boudaud
    • 4
  • F. Mahmoudi
    • 1
    • 2
    • 3
    • 5
  • G. Robbins
    • 1
    • 2
  1. 1.Univ Lyon, Univ Lyon 1, ENS de Lyon, CNRS, Centre de Recherche Astrophysique de Lyon UMR5574Saint-Genis-LavalFrance
  2. 2.Univ Lyon, Univ Lyon 1, CNRS/IN2P3, Institut de Physique Nucléaire de Lyon UMR5822VilleurbanneFrance
  3. 3.Theoretical Physics DepartmentCERNGeneva 23Switzerland
  4. 4.Laboratoire de Physique Théorique et Hautes Énergies (LPTHE), UMR 7589 CNRS & UPMCParisFrance
  5. 5.Institut Universitaire de FranceParisFrance

Personalised recommendations