Journal of High Energy Physics

, 2017:129 | Cite as

Thermodynamics with pressure and volume under charged particle absorption

  • Bogeun Gwak
Open Access
Regular Article - Theoretical Physics


We investigate the variation of the charged anti-de Sitter black hole under charged particle absorption by considering thermodynamic volume. When the energy of the particle is considered to contribute to the internal energy of the black hole, the variation exactly corresponds to the prediction of the first law of thermodynamics. Nevertheless, we find the decrease of the Bekenstein-Hawking entropy for extremal and near-extremal black holes under the absorption, which is an irreversible process. This violation of the second law of thermodynamics is only found when considering thermodynamic volume. We test the weak cosmic censorship conjecture affected by the violation. Fortunately, the conjecture is still valid, but extremal and near-extremal black holes do not change their configurations when any particle enters the black hole. This result is quite different from the case in which thermodynamic volume is not considered.


Black Holes Classical Theories of Gravity Models of Quantum Gravity 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    S.W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206] [INSPIRE].
  2. [2]
    S.W. Hawking, Black holes and thermodynamics, Phys. Rev. D 13 (1976) 191 [INSPIRE].ADSGoogle Scholar
  3. [3]
    D. Christodoulou, Reversible and irreversible transformations in black hole physics, Phys. Rev. Lett. 25 (1970) 1596 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    D. Christodoulou and R. Ruffini, Reversible transformations of a charged black hole, Phys. Rev. D 4 (1971) 3552 [INSPIRE].ADSGoogle Scholar
  5. [5]
    L. Smarr, Mass formula for Kerr black holes, Phys. Rev. Lett. 30 (1973) 71 [Erratum ibid. 30 (1973) 521] [INSPIRE].
  6. [6]
    J.M. Bardeen, Kerr metric black holes, Nature 226 (1970) 64 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    J.D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333 [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  8. [8]
    J.D. Bekenstein, Generalized second law of thermodynamics in black hole physics, Phys. Rev. D 9 (1974) 3292 [INSPIRE].ADSGoogle Scholar
  9. [9]
    R. Penrose, Gravitational collapse and space-time singularities, Phys. Rev. Lett. 14 (1965) 57 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    R. Penrose, Gravitational collapse: the role of general relativity, Riv. Nuovo Cim. 1 (1969) 252 [Gen. Rel. Grav. 34 (2002) 1141] [INSPIRE].
  11. [11]
    R. Wald, Gedanken experiments to destroy a black hole, Annals Phys. 82 (1974) 548.ADSCrossRefGoogle Scholar
  12. [12]
    T. Jacobson and T.P. Sotiriou, Over-spinning a black hole with a test body, Phys. Rev. Lett. 103 (2009) 141101 [Erratum ibid. 103 (2009) 209903] [arXiv:0907.4146] [INSPIRE].
  13. [13]
    E. Barausse, V. Cardoso and G. Khanna, Test bodies and naked singularities: is the self-force the cosmic censor?, Phys. Rev. Lett. 105 (2010) 261102 [arXiv:1008.5159] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    E. Barausse, V. Cardoso and G. Khanna, Testing the cosmic censorship conjecture with point particles: the effect of radiation reaction and the self-force, Phys. Rev. D 84 (2011) 104006 [arXiv:1106.1692] [INSPIRE].ADSGoogle Scholar
  15. [15]
    M. Colleoni, L. Barack, A.G. Shah and M. van de Meent, Self-force as a cosmic censor in the Kerr overspinning problem, Phys. Rev. D 92 (2015) 084044 [arXiv:1508.04031] [INSPIRE].ADSMathSciNetGoogle Scholar
  16. [16]
    V.E. Hubeny, Overcharging a black hole and cosmic censorship, Phys. Rev. D 59 (1999) 064013 [gr-qc/9808043] [INSPIRE].
  17. [17]
    S. Isoyama, N. Sago and T. Tanaka, Cosmic censorship in overcharging a Reissner-Nordström black hole via charged particle absorption, Phys. Rev. D 84 (2011) 124024 [arXiv:1108.6207] [INSPIRE].ADSGoogle Scholar
  18. [18]
    M. Colleoni and L. Barack, Overspinning a Kerr black hole: the effect of self-force, Phys. Rev. D 91 (2015) 104024 [arXiv:1501.07330] [INSPIRE].ADSMathSciNetGoogle Scholar
  19. [19]
    M. Bouhmadi-Lopez, V. Cardoso, A. Nerozzi and J.V. Rocha, Black holes die hard: can one spin-up a black hole past extremality?, Phys. Rev. D 81 (2010) 084051 [arXiv:1003.4295] [INSPIRE].ADSGoogle Scholar
  20. [20]
    S. Hod, A note on black-hole physics, cosmic censorship and the charge-mass relation of atomic nuclei, Class. Quant. Grav. 33 (2016) 037001 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    J. Natario, L. Queimada and R. Vicente, Test fields cannot destroy extremal black holes, Class. Quant. Grav. 33 (2016) 175002 [arXiv:1601.06809] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    G.T. Horowitz, J.E. Santos and B. Way, Evidence for an electrifying violation of cosmic censorship, Class. Quant. Grav. 33 (2016) 195007 [arXiv:1604.06465] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    K. Düztas, Overspinning BTZ black holes with test particles and fields, Phys. Rev. D 94 (2016) 124031 [arXiv:1701.07241] [INSPIRE].ADSMathSciNetGoogle Scholar
  24. [24]
    J. Sorce and R.M. Wald, Gedanken experiments to destroy a black hole II: Kerr-Newman black holes cannot be over-charged or over-spun, Phys. Rev. D 96 (2017) 104014 [arXiv:1707.05862] [INSPIRE].ADSGoogle Scholar
  25. [25]
    S. Gao and Y. Zhang, Destroying extremal Kerr-Newman black holes with test particles, Phys. Rev. D 87 (2013) 044028 [arXiv:1211.2631] [INSPIRE].ADSGoogle Scholar
  26. [26]
    J.V. Rocha, R. Santarelli and T. Delsate, Collapsing rotating shells in Myers-Perry-AdS 5 spacetime: a perturbative approach, Phys. Rev. D 89 (2014) 104006 [arXiv:1402.4161] [INSPIRE].ADSGoogle Scholar
  27. [27]
    J.V. Rocha and R. Santarelli, Flowing along the edge: spinning up black holes in AdS spacetimes with test particles, Phys. Rev. D 89 (2014) 064065 [arXiv:1402.4840] [INSPIRE].ADSGoogle Scholar
  28. [28]
    B. McInnes and Y.C. Ong, A note on physical mass and the thermodynamics of AdS-Kerr black holes, JCAP 11 (2015) 004 [arXiv:1506.01248] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    J.V. Rocha and V. Cardoso, Gravitational perturbation of the BTZ black hole induced by test particles and weak cosmic censorship in AdS spacetime, Phys. Rev. D 83 (2011) 104037 [arXiv:1102.4352] [INSPIRE].ADSGoogle Scholar
  30. [30]
    B. Gwak, Stability of horizon in warped AdS black hole via particle absorption, arXiv:1707.09128 [INSPIRE].
  31. [31]
    B. Gwak and B.-H. Lee, Cosmic censorship of rotating anti-de Sitter black hole, JCAP 02 (2016) 015 [arXiv:1509.06691] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    B. Gwak, Cosmic censorship conjecture in Kerr-Sen black hole, Phys. Rev. D 95 (2017) 124050 [arXiv:1611.09640] [INSPIRE].ADSGoogle Scholar
  33. [33]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  35. [35]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    J. Babington, J. Erdmenger, N.J. Evans, Z. Guralnik and I. Kirsch, Chiral symmetry breaking and pions in nonsupersymmetric gauge/gravity duals, Phys. Rev. D 69 (2004) 066007 [hep-th/0306018] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  39. [39]
    M. Kruczenski, D. Mateos, R.C. Myers and D.J. Winters, Towards a holographic dual of large-N c QCD, JHEP 05 (2004) 041 [hep-th/0311270] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    T. Sakai and S. Sugimoto, More on a holographic dual of QCD, Prog. Theor. Phys. 114 (2005) 1083 [hep-th/0507073] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  41. [41]
    J. Erlich, E. Katz, D.T. Son and M.A. Stephanov, QCD and a holographic model of hadrons, Phys. Rev. Lett. 95 (2005) 261602 [hep-ph/0501128] [INSPIRE].
  42. [42]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    K. Jensen, Chiral anomalies and AdS/CMT in two dimensions, JHEP 01 (2011) 109 [arXiv:1012.4831] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    T. Andrade, J.I. Jottar and R.G. Leigh, Boundary conditions and unitarity: the Maxwell-Chern-Simons system in AdS 3 /CFT 2, JHEP 05 (2012) 071 [arXiv:1111.5054] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  46. [46]
    H.-C. Chang, M. Fujita and M. Kaminski, From Maxwell-Chern-Simons theory in AdS 3 towards hydrodynamics in 1 + 1 dimensions, JHEP 10 (2014) 118 [arXiv:1403.5263] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  47. [47]
    L.-Y. Hung and A. Sinha, Holographic quantum liquids in 1 + 1 dimensions, JHEP 01 (2010) 114 [arXiv:0909.3526] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  48. [48]
    R.A. Davison, M. Goykhman and A. Parnachev, AdS/CFT and Landau Fermi liquids, JHEP 07 (2014) 109 [arXiv:1312.0463] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    C. Teitelboim, The cosmological constant as a thermodynamic black hole parameter, Phys. Lett. B 158 (1985) 293 [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    J.D. Brown and C. Teitelboim, Neutralization of the cosmological constant by membrane creation, Nucl. Phys. B 297 (1988) 787 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  51. [51]
    M.M. Caldarelli, G. Cognola and D. Klemm, Thermodynamics of Kerr-Newman-AdS black holes and conformal field theories, Class. Quant. Grav. 17 (2000) 399 [hep-th/9908022] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. [52]
    T. Padmanabhan, Classical and quantum thermodynamics of horizons in spherically symmetric space-times, Class. Quant. Grav. 19 (2002) 5387 [gr-qc/0204019] [INSPIRE].
  53. [53]
    B.P. Dolan, The cosmological constant and the black hole equation of state, Class. Quant. Grav. 28 (2011) 125020 [arXiv:1008.5023] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  54. [54]
    M. Cvetič, G.W. Gibbons, D. Kubiznak and C.N. Pope, Black hole enthalpy and an entropy inequality for the thermodynamic volume, Phys. Rev. D 84 (2011) 024037 [arXiv:1012.2888] [INSPIRE].ADSGoogle Scholar
  55. [55]
    D. Kastor, S. Ray and J. Traschen, Enthalpy and the mechanics of AdS black holes, Class. Quant. Grav. 26 (2009) 195011 [arXiv:0904.2765] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  56. [56]
    B.P. Dolan, Pressure and volume in the first law of black hole thermodynamics, Class. Quant. Grav. 28 (2011) 235017 [arXiv:1106.6260] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  57. [57]
    D. Kubiznak and R.B. Mann, P-V criticality of charged AdS black holes, JHEP 07 (2012) 033 [arXiv:1205.0559] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  58. [58]
    C.V. Johnson, Holographic heat engines, Class. Quant. Grav. 31 (2014) 205002 [arXiv:1404.5982] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  59. [59]
    E. Caceres, P.H. Nguyen and J.F. Pedraza, Holographic entanglement entropy and the extended phase structure of STU black holes, JHEP 09 (2015) 184 [arXiv:1507.06069] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  60. [60]
    A. Karch and B. Robinson, Holographic black hole chemistry, JHEP 12 (2015) 073 [arXiv:1510.02472] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  61. [61]
    D. Kubiznak, R.B. Mann and M. Teo, Black hole chemistry: thermodynamics with Lambda, Class. Quant. Grav. 34 (2017) 063001 [arXiv:1608.06147] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  62. [62]
    R.A. Hennigar, F. McCarthy, A. Ballon and R.B. Mann, Holographic heat engines: general considerations and rotating black holes, Class. Quant. Grav. 34 (2017) 175005 [arXiv:1704.02314] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  63. [63]
    S.-W. Wei and Y.-X. Liu, Charged AdS black hole heat engines, arXiv:1708.08176 [INSPIRE].
  64. [64]
    R. Gregory, D. Kastor and J. Traschen, Black hole thermodynamics with dynamical lambda, JHEP 10 (2017) 118 [arXiv:1707.06586] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  65. [65]
    B. Gwak, Collision of two rotating Hayward black holes, Eur. Phys. J. C 77 (2017) 482 [arXiv:1703.10154] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    Y. Tian and X.-N. Wu, Dynamics of gravity as thermodynamics on the spherical holographic screen, Phys. Rev. D 83 (2011) 021501 [arXiv:1007.4331] [INSPIRE].ADSGoogle Scholar
  67. [67]
    B.P. Dolan, Where is the PdV term in the fist law of black hole thermodynamics?, arXiv:1209.1272 [INSPIRE].
  68. [68]
    B.P. Dolan, D. Kastor, D. Kubiznak, R.B. Mann and J. Traschen, Thermodynamic volumes and isoperimetric inequalities for de Sitter black holes, Phys. Rev. D 87 (2013) 104017 [arXiv:1301.5926] [INSPIRE].ADSGoogle Scholar
  69. [69]
    B. Carter, Hamilton-Jacobi and Schrödinger separable solutions of Einstein’s equations, Commun. Math. Phys. 10 (1968) 280 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Department of Physics and AstronomySejong UniversitySeoulRepublic of Korea

Personalised recommendations