Advertisement

Journal of High Energy Physics

, 2017:120 | Cite as

NLO QCD+EW predictions for 22ν diboson signatures at the LHC

  • S. Kallweit
  • J. M. Lindert
  • S. Pozzorini
  • M. Schönherr
Open Access
Regular Article - Theoretical Physics

Abstract

We present next-to-leading order (NLO) calculations including QCD and electroweak (EW) corrections for 22ν diboson signatures with two opposite-charge leptons and two neutrinos. Specifically, we study the processes \( pp\to {e}^{+}{\mu}^{-}{\nu}_e{\overline{\nu}}_{\mu } \) and \( pp\to {e}^{+}{e}^{-}\nu \overline{\nu} \), including all relevant off-shell diboson channels, W +W , ZZ, γZ, as well as non-resonant contributions. Photon-induced processes are computed at NLO EW, and we discuss subtle differences related to the definition and the renormalisation of the coupling α for processes with initial- and final-state photons. All calculations are performed within the automated Munich/Sherpa+OpenLoops frameworks, and we provide numerical predictions for the LHC at 13 TeV. The behaviour of the corrections is investigated with emphasis on the high-energy regime, where NLO EW effects can amount to tens of percent due to large Sudakov logarithms. The interplay between W W and ZZ contributions to the same-flavour channel, \( pp\to {e}^{+}{e}^{-}\nu \overline{\nu} \), is discussed in detail, and a quantitative analysis of photon-induced contributions is presented. Finally, we consider approximations that account for all sources of large logarithms, at high and low energy, by combining virtual EW corrections with a YFS soft-photon resummation or a QED parton shower.

Keywords

NLO Computations 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    T. Gehrmann et al., W + W Production at Hadron Colliders in Next to Next to Leading Order QCD, Phys. Rev. Lett. 113 (2014) 212001 [arXiv:1408.5243] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    M. Grazzini, S. Kallweit, S. Pozzorini, D. Rathlev and M. Wiesemann, W + W production at the LHC: fiducial cross sections and distributions in NNLO QCD, JHEP 08 (2016) 140 [arXiv:1605.02716] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    F. Cascioli et al., ZZ production at hadron colliders in NNLO QCD, Phys. Lett. B 735 (2014) 311 [arXiv:1405.2219] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    M. Grazzini, S. Kallweit and D. Rathlev, ZZ production at the LHC: fiducial cross sections and distributions in NNLO QCD, Phys. Lett. B 750 (2015) 407 [arXiv:1507.06257] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    F. Caola, K. Melnikov, R. Röntsch and L. Tancredi, QCD corrections to ZZ production in gluon fusion at the LHC, Phys. Rev. D 92 (2015) 094028 [arXiv:1509.06734] [INSPIRE].ADSGoogle Scholar
  6. [6]
    F. Caola, K. Melnikov, R. Röntsch and L. Tancredi, QCD corrections to W + W production through gluon fusion, Phys. Lett. B 754 (2016) 275 [arXiv:1511.08617] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    A. Denner and S. Pozzorini, One loop leading logarithms in electroweak radiative corrections. 1. Results, Eur. Phys. J. C 18 (2001) 461 [hep-ph/0010201] [INSPIRE].
  8. [8]
    E. Accomando, A. Denner and A. Kaiser, Logarithmic electroweak corrections to gauge-boson pair production at the LHC, Nucl. Phys. B 706 (2005) 325 [hep-ph/0409247] [INSPIRE].
  9. [9]
    A. Bierweiler, T. Kasprzik, J.H. Kühn and S. Uccirati, Electroweak corrections to W-boson pair production at the LHC, JHEP 11 (2012) 093 [arXiv:1208.3147] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    J. Baglio, L.D. Ninh and M.M. Weber, Massive gauge boson pair production at the LHC: a next-to-leading order story, Phys. Rev. D 88 (2013) 113005 [arXiv:1307.4331] [INSPIRE].ADSGoogle Scholar
  11. [11]
    S. Gieseke, T. Kasprzik and J.H. Kühn, Vector-boson pair production and electroweak corrections in HERWIG++, Eur. Phys. J. C 74 (2014) 2988 [arXiv:1401.3964] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    J.H. Kühn, F. Metzler, A.A. Penin and S. Uccirati, Next-to-Next-to-Leading Electroweak Logarithms for W-Pair Production at LHC, JHEP 06 (2011) 143 [arXiv:1101.2563] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  13. [13]
    M. Billóni, S. Dittmaier, B. Jäger and C. Speckner, Next-to-leading order electroweak corrections to ppW + W → 4 leptons at the LHC in double-pole approximation, JHEP 12 (2013) 043 [arXiv:1310.1564] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    B. Biedermann, A. Denner, S. Dittmaier, L. Hofer and B. Jäger, Electroweak corrections to ppμ + μ e + e + X at the LHC: a Higgs background study, Phys. Rev. Lett. 116 (2016) 161803 [arXiv:1601.07787] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    B. Biedermann, A. Denner, S. Dittmaier, L. Hofer and B. Jäger, Next-to-leading-order electroweak corrections to the production of four charged leptons at the LHC, JHEP 01 (2017) 033 [arXiv:1611.05338] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    B. Biedermann et al., Next-to-leading-order electroweak corrections to ppW + W → 4 leptons at the LHC, JHEP 06 (2016) 065 [arXiv:1605.03419] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    A. Denner, S. Dittmaier and R. Schuster, Radiative corrections to γγ → W + W in the electroweak standard model, Nucl. Phys. B 452 (1995) 80 [hep-ph/9503442] [INSPIRE].
  18. [18]
    G. Jikia, Electroweak O(α) corrections to W + W pair production in polarized γγ collisions, Nucl. Phys. B 494 (1997) 19 [hep-ph/9612380] [INSPIRE].
  19. [19]
    A. Bredenstein, S. Dittmaier and M. Roth, Four-fermion production at gamma gamma colliders. 2. Radiative corrections in double-pole approximation, Eur. Phys. J. C 44 (2005) 27 [hep-ph/0506005] [INSPIRE].
  20. [20]
    A.D. Martin, R.G. Roberts, W.J. Stirling and R.S. Thorne, Parton distributions incorporating QED contributions, Eur. Phys. J. C 39 (2005) 155 [hep-ph/0411040] [INSPIRE].
  21. [21]
    NNPDF collaboration, R.D. Ball et al., Parton distributions with QED corrections, Nucl. Phys. B 877 (2013) 290 [arXiv:1308.0598] [INSPIRE].
  22. [22]
    C. Schmidt, J. Pumplin, D. Stump and C.P. Yuan, CT14QED parton distribution functions from isolated photon production in deep inelastic scattering, Phys. Rev. D 93 (2016) 114015 [arXiv:1509.02905] [INSPIRE].ADSGoogle Scholar
  23. [23]
    A. Manohar, P. Nason, G.P. Salam and G. Zanderighi, How bright is the proton? A precise determination of the photon parton distribution function, Phys. Rev. Lett. 117 (2016) 242002 [arXiv:1607.04266] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    S. Kallweit, J.M. Lindert, P. Maierhöfer, S. Pozzorini and M. Schönherr, NLO QCD+EW predictions for V + jets including off-shell vector-boson decays and multijet merging, JHEP 04 (2016) 021 [arXiv:1511.08692] [INSPIRE].ADSGoogle Scholar
  25. [25]
    L.A. Harland-Lang, V.A. Khoze and M.G. Ryskin, Sudakov effects in photon-initiated processes, Phys. Lett. B 761 (2016) 20 [arXiv:1605.04935] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    S. Kallweit, J.M. Lindert, P. Maierhöfer, S. Pozzorini and M. Schönherr, NLO electroweak automation and precise predictions for W+multijet production at the LHC, JHEP 04 (2015) 012 [arXiv:1412.5157] [INSPIRE].CrossRefGoogle Scholar
  27. [27]
    F. Cascioli, P. Maierhöfer and S. Pozzorini, Scattering Amplitudes with Open Loops, Phys. Rev. Lett. 108 (2012) 111601 [arXiv:1111.5206] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    F. Cascioli, J. Lindert, P. Maierhöfer and S. Pozzorini, OpenLoops, one-loop generator, available at http://openloops.hepforge.org.
  29. [29]
    S. Kallweit, Munich, MUlti-chaNnel Integrator at Swiss (CH) precision — an automated parton level NLO generator, in preparation.Google Scholar
  30. [30]
    T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [INSPIRE].
  31. [31]
    F. Krauss, R. Kuhn and G. Soff, AMEGIC++ 1.0: A matrix element generator in C++, JHEP 02 (2002) 044 [hep-ph/0109036] [INSPIRE].
  32. [32]
    T. Gleisberg and F. Krauss, Automating dipole subtraction for QCD NLO calculations, Eur. Phys. J. C 53 (2008) 501 [arXiv:0709.2881] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    M. Schönherr, An automated subtraction of NLO EW infrared divergences, in preparation.Google Scholar
  34. [34]
    A. Denner, S. Dittmaier, M. Roth and L.H. Wieders, Electroweak corrections to charged-current e + e → 4 fermion processes: Technical details and further results, Nucl. Phys. B 724 (2005) 247 [Erratum ibid. B 854 (2012) 504] [hep-ph/0505042] [INSPIRE].
  35. [35]
    S. Catani and M.H. Seymour, A General algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].
  36. [36]
    S. Catani, S. Dittmaier, M.H. Seymour and Z. Trócsányi, The dipole formalism for next-to-leading order QCD calculations with massive partons, Nucl. Phys. B 627 (2002) 189 [hep-ph/0201036] [INSPIRE].
  37. [37]
    S. Dittmaier, A general approach to photon radiation off fermions, Nucl. Phys. B 565 (2000) 69 [hep-ph/9904440] [INSPIRE].
  38. [38]
    S. Dittmaier, A. Kabelschacht and T. Kasprzik, Polarized QED splittings of massive fermions and dipole subtraction for non-collinear-safe observables, Nucl. Phys. B 800 (2008) 146 [arXiv:0802.1405] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    T. Gehrmann and N. Greiner, Photon Radiation with MadDipole, JHEP 12 (2010) 050 [arXiv:1011.0321] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  40. [40]
    A. Denner, S. Dittmaier and L. Hofer, COLLIER — A fortran-library for one-loop integrals, PoS(LL2014)071 [arXiv:1407.0087] [INSPIRE].
  41. [41]
    A. Denner and S. Dittmaier, Reduction of one loop tensor five point integrals, Nucl. Phys. B 658 (2003) 175 [hep-ph/0212259] [INSPIRE].
  42. [42]
    A. Denner and S. Dittmaier, Reduction schemes for one-loop tensor integrals, Nucl. Phys. B 734 (2006) 62 [hep-ph/0509141] [INSPIRE].
  43. [43]
    A. Denner and S. Dittmaier, Scalar one-loop 4-point integrals, Nucl. Phys. B 844 (2011) 199 [arXiv:1005.2076] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    G. Ossola, C.G. Papadopoulos and R. Pittau, CutTools: A Program implementing the OPP reduction method to compute one-loop amplitudes, JHEP 03 (2008) 042 [arXiv:0711.3596] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys. B 763 (2007) 147 [hep-ph/0609007] [INSPIRE].
  46. [46]
    A. van Hameren, OneLOop: For the evaluation of one-loop scalar functions, Comput. Phys. Commun. 182 (2011) 2427 [arXiv:1007.4716] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  47. [47]
    S. Actis, A. Denner, L. Hofer, J.-N. Lang, A. Scharf and S. Uccirati, RECOLA: REcursive Computation of One-Loop Amplitudes, Comput. Phys. Commun. 214 (2017) 140 [arXiv:1605.01090] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  48. [48]
    B. Biedermann, S. Bräuer, A. Denner, M. Pellen, S. Schumann and J.M. Thompson, Automation of NLO QCD and EW corrections with Sherpa and Recola, Eur. Phys. J. C 77 (2017) 492 [arXiv:1704.05783] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    J.H. Kühn, A. Kulesza, S. Pozzorini and M. Schulze, Electroweak corrections to hadronic production of W bosons at large transverse momenta, Nucl. Phys. B 797 (2008) 27 [arXiv:0708.0476] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    D.R. Yennie, S.C. Frautschi and H. Suura, The infrared divergence phenomena and high-energy processes, Annals Phys. 13 (1961) 379 [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    S. Schumann and F. Krauss, A parton shower algorithm based on Catani-Seymour dipole factorisation, JHEP 03 (2008) 038 [arXiv:0709.1027] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    S. Höche, S. Schumann and F. Siegert, Hard photon production and matrix-element parton-shower merging, Phys. Rev. D 81 (2010) 034026 [arXiv:0912.3501] [INSPIRE].ADSGoogle Scholar
  53. [53]
    M. Schönherr and F. Krauss, Soft Photon Radiation in Particle Decays in SHERPA, JHEP 12 (2008) 018 [arXiv:0810.5071] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    J.R. Andersen et al., Les Houches 2015: Physics at TeV Colliders Standard Model Working Group Report, arXiv:1605.04692 [INSPIRE].
  55. [55]
    S. Alioli et al., Precision studies of observables in ppW l and ppγ, Zl + l processes at the LHC, Eur. Phys. J. C 77 (2017) 280 [arXiv:1606.02330] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    S. Höche, F. Krauss, M. Schönherr and F. Siegert, A critical appraisal of NLO+PS matching methods, JHEP 09 (2012) 049 [arXiv:1111.1220] [INSPIRE].CrossRefGoogle Scholar
  57. [57]
    T. Carli, T. Gehrmann and S. Höche, Hadronic final states in deep-inelastic scattering with Sherpa, Eur. Phys. J. C 67 (2010) 73 [arXiv:0912.3715] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    S. Höche, F. Krauss and M. Schönherr, Uncertainties in MEPS@NLO calculations of h+jets, Phys. Rev. D 90 (2014) 014012 [arXiv:1401.7971] [INSPIRE].ADSGoogle Scholar
  59. [59]
    Particle Data Group collaboration, K.A. Olive et al., Review of Particle Physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].
  60. [60]
    LHC Higgs Cross section Working Group collaboration, J.R. Andersen et al., Handbook of LHC Higgs Cross sections: 3. Higgs Properties, arXiv:1307.1347 [INSPIRE].
  61. [61]
    A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    NNPDF collaboration, R.D. Ball et al., Parton distributions for the LHC Run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE].
  63. [63]
    V.M. Budnev, I.F. Ginzburg, G.V. Meledin and V.G. Serbo, The Two photon particle production mechanism. Physical problems. Applications. Equivalent photon approximation, Phys. Rept. 15 (1975) 181 [INSPIRE].
  64. [64]
    C.P. Yuan, Update of the CT14 QED PDFs, talk given at The PDF4LHC meeting, 13 September 2016.Google Scholar
  65. [65]
    C. Schmidt and C.P. Yuan, private communication.Google Scholar
  66. [66]
    M. Cacciari, M. Greco and P. Nason, The p T spectrum in heavy flavor hadroproduction, JHEP 05 (1998) 007 [hep-ph/9803400] [INSPIRE].
  67. [67]
    M. Rubin, G.P. Salam and S. Sapeta, Giant QCD K-factors beyond NLO, JHEP 09 (2010) 084 [arXiv:1006.2144] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    A. Buckley et al., Rivet user manual, Comput. Phys. Commun. 184 (2013) 2803 [arXiv:1003.0694] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    M.L. Mangano et al., Physics at a 100 TeV pp collider: Standard Model processes, CERN Yellow Report (2017) 1 [arXiv:1607.01831] [INSPIRE].
  70. [70]
    V. Bertone, S. Carrazza, D. Pagani and M. Zaro, On the Impact of Lepton PDFs, JHEP 11 (2015) 194 [arXiv:1508.07002] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    A. Denner, Techniques for calculation of electroweak radiative corrections at the one loop level and results for W physics at LEP-200, Fortsch. Phys. 41 (1993) 307 [arXiv:0709.1075] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.TH Division, Physics DepartmentCERNGeneva 23Switzerland
  2. 2.Institute for Particle Physics PhenomenologyDurham UniversityDurhamU.K.
  3. 3.Physik-InstitutUniversität ZürichZürichSwitzerland

Personalised recommendations