Journal of High Energy Physics

, 2017:105 | Cite as

Mass-deformed M2 branes in Stenzel space

  • Óscar J. C. Dias
  • Gavin S. Hartnett
  • Benjamin E. Niehoff
  • Jorge E. Santos
Open Access
Regular Article - Theoretical Physics


We obtain finite-temperature M2 black branes in 11-dimensional supergravity, in a G4-flux background whose self-dual part approaches a solution of Cvetič, Gibbons, Lü, and Pope, based upon Stenzel’s family of Ricci-flat Kähler deformed cones. Our solutions are asymptotically AdS4 times a 7-dimensional Stiefel manifold V5,2, and the branes are "smeared" to retain SO(5) symmetry in the internal space. The solutions represent a mass deformation of the corresponding dual CFT3, whose full description is at this time only partially-understood. We investigate the possibility of a confinement/de-confinement phase transition analogous to the AdS5 × S5 case, and a possible Gregory-Laflamme type instability which could lead to polarised brane solutions which break SO(5). We discuss possible consequences for AdS/CFT and the KKLT cosmological uplift mechanism.


Black Holes in String Theory p-branes Supergravity Models 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    G.T. Horowitz, Black Holes in Higher Dimensions, Cambridge University Press, Cambridge U.K. (2012).CrossRefzbMATHGoogle Scholar
  2. [2]
    ÓJ.C. Dias, J.E. Santos and B. Way, Lumpy AdS 5 × S 5 black holes and black belts, JHEP 04 (2015) 060 [arXiv:1501.06574] [INSPIRE].
  3. [3]
    Ó.J. Dias, J.E. Santos and B. Way, Localised AdS 5 × S 5 Black Holes, Phys. Rev. Lett. 117 (2016) 151101 [arXiv:1605.04911] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    S.W. Hawking and D.N. Page, Thermodynamics of Black Holes in anti-de Sitter Space, Commun. Math. Phys. 87 (1983) 577 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    Ó.J.C. Dias, J.E. Santos and B. Way, Localised and nonuniform thermal states of super-Yang-Mills on a circle, JHEP 06 (2017) 029 [arXiv:1702.07718] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    D. Martelli and J. Sparks, AdS 4/CFT 3 duals from M2-branes at hypersurface singularities and their deformations, JHEP 12 (2009) 017 [arXiv:0909.2036] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    A. Ceresole, G. Dall’Agata, R. D’Auria and S. Ferrara, M theory on the Stiefel manifold and 3 − D conformal field theories, JHEP 03 (2000) 011 [hep-th/9912107] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    D.L. Jafferis, Quantum corrections to \( \mathcal{N} \) = 2 Chern-Simons theories with flavor and their AdS 4 duals, JHEP 08 (2013) 046 [arXiv:0911.4324] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    M. Cvetič, G.W. Gibbons, H. Lü and C.N. Pope, Ricci flat metrics, harmonic forms and brane resolutions, Commun. Math. Phys. 232 (2003) 457 [hep-th/0012011] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: Duality cascades and χ SB resolution of naked singularities, JHEP 08 (2000) 052 [hep-th/0007191] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    O. Aharony, A. Buchel and P. Kerner, The Black hole in the throat: Thermodynamics of strongly coupled cascading gauge theories, Phys. Rev. D 76 (2007) 086005 [arXiv:0706.1768] [INSPIRE].ADSMathSciNetGoogle Scholar
  12. [12]
    I. Bena, A. Buchel and O.J.C. Dias, Horizons cannot save the Landscape, Phys. Rev. D 87 (2013) 063012 [arXiv:1212.5162] [INSPIRE].ADSGoogle Scholar
  13. [13]
    T. Wiseman, Numerical construction of static and stationary black holes, [arXiv:1107.5513 [INSPIRE].
  14. [14]
    Ó.J.C. Dias, J.E. Santos and B. Way, Numerical Methods for Finding Stationary Gravitational Solutions, Class. Quant. Grav. 33 (2016) 133001 [arXiv:1510.02804] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].
  16. [16]
    S. Kachru, J. Pearson and H.L. Verlinde, Brane/flux annihilation and the string dual of a nonsupersymmetric field theory, JHEP 06 (2002) 021 [hep-th/0112197] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    I. Bena, M. Graña and N. Halmagyi, On the Existence of Meta-stable Vacua in Klebanov-Strassler, JHEP 09 (2010) 087 [arXiv:0912.3519] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    J. Blåbäck, U.H. Danielsson, D. Junghans, T. Van Riet and S.C. Vargas, Localised anti-branes in non-compact throats at zero and finite T , JHEP 02 (2015) 018 [arXiv:1409.0534] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    I. Bena, G. Giecold and N. Halmagyi, The Backreaction of Anti-M2 Branes on a Warped Stenzel Space, JHEP 04 (2011) 120 [arXiv:1011.2195] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    S. Massai, Metastable Vacua and the Backreacted Stenzel Geometry, JHEP 06 (2012) 059 [arXiv:1110.2513] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    D. Cohen-Maldonado, J. Diaz and F.F. Gautason, Polarised antibranes from Smarr relations, JHEP 05 (2016) 175 [arXiv:1603.05678] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    I. Bena, J. Blaback, U.H. Danielsson and T. Van Riet, Antibranes cannot become black, Phys. Rev. D 87 (2013) 104023 [arXiv:1301.7071] [INSPIRE].ADSGoogle Scholar
  23. [23]
    G.S. Hartnett, Localised Anti-Branes in Flux Backgrounds, JHEP 06 (2015) 007 [arXiv:1501.06568] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    G.T. Horowitz and A. Strominger, Black strings and P-branes, Nucl. Phys. B 360 (1991) 197 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    L. Castellani, L.J. Romans and N.P. Warner, Symmetries of Coset Spaces and Kaluza-Klein Supergravity, Annals Phys. 157 (1984) 394 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    A. Bergman and C.P. Herzog, The Volume of some nonspherical horizons and the AdS/CFT correspondence, JHEP 01 (2002) 030 [hep-th/0108020] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    I.R. Klebanov and S.S. Pufu, M-Branes and Metastable States, JHEP 08 (2011) 035 [arXiv:1006.3587] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    P. Candelas and X.C. de la Ossa, Comments on Conifolds, Nucl. Phys. B 342 (1990) 246 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    D. Cassani, P. Koerber and O. Varela, All homogeneous N = 2 M-theory truncations with supersymmetric AdS4 vacua, JHEP 11 (2012) 173 [arXiv:1208.1262] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    R. Eager and J. Schmude, Superconformal Indices and M2-Branes, JHEP 12 (2015) 062 [arXiv:1305.3547] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  31. [31]
    D. Marolf, Chern-Simons terms and the three notions of charge, hep-th/0006117 [INSPIRE].
  32. [32]
    M.J. Duff, B.E.W. Nilsson and C.N. Pope, Kaluza-Klein Supergravity, Phys. Rept. 130 (1986) 1 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    M. Headrick, S. Kitchen and T. Wiseman, A New approach to static numerical relativity and its application to Kaluza-Klein black holes, Class. Quant. Grav. 27 (2010) 035002 [arXiv:0905.1822] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    M. Taylor, Anomalies, counterterms and the N = 0 Polchinski-Strassler solutions, hep-th/0103162 [INSPIRE].
  35. [35]
    Ó.J.C. Dias, G.S. Hartnett, B.E. Niehoff and J.E. Santos, to appear.Google Scholar
  36. [36]
    S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  37. [37]
    S.S. Gubser, Curvature singularities: the good, the bad and the naked, Adv. Theor. Math. Phys. 4 (2000) 679 [hep-th/0002160] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Óscar J. C. Dias
    • 1
  • Gavin S. Hartnett
    • 1
  • Benjamin E. Niehoff
    • 2
  • Jorge E. Santos
    • 3
  1. 1.STAG Research Centre and the School of Mathematical SciencesUniversity of SouthamptonHighfieldU.K.
  2. 2.FWO [PEGASUS]2 Marie Sklodowska-Curie FellowInstitute for Theoretical Physics, KU LeuvenLeuvenBelgium
  3. 3.Department of Applied Mathematics and Theoretical PhysicsUniversity of CambridgeCambridgeU.K.

Personalised recommendations