# Algebraic cycles and local anomalies in F-theory

- 57 Downloads
- 2 Citations

## Abstract

We introduce a set of identities in the cohomology ring of elliptic fibrations which are equivalent to the cancellation of gauge and mixed gauge-gravitational anomalies in F-theory compactifications to four and six dimensions. The identities consist in (co)homological relations between complex codimension-two cycles. The same set of relations, once evaluated on elliptic Calabi-Yau three-folds and four-folds, is shown to universally govern the structure of anomalies and their Green-Schwarz cancellation in six- and four-dimensional F-theory vacua, respectively. We furthermore conjecture that these relations hold not only within the cohomology ring, but even at the level of the Chow ring, i.e. as relations among codimension-two cycles modulo rational equivalence. We verify this conjecture in non-trivial examples with Abelian and non-Abelian gauge groups factors. Apart from governing the structure of local anomalies, the identities in the Chow ring relate different types of gauge backgrounds on elliptically fibred Calabi-Yau four-folds.

## Keywords

Anomalies in Field and String Theories F-Theory Differential and Algebraic Geometry Flux compactifications## Notes

### **Open Access**

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

## References

- [1]M.B. Green and J.H. Schwarz,
*Anomaly Cancellation in Supersymmetric D*= 10*Gauge Theory and Superstring Theory*,*Phys. Lett.***B 149**(1984) 117 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [2]M.B. Green and J.H. Schwarz,
*Infinity Cancellations in*SO(32)*Superstring Theory*,*Phys. Lett.***B 151**(1985) 21 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [3]M.B. Green and J.H. Schwarz,
*The Hexagon Gauge Anomaly in Type I Superstring Theory*,*Nucl. Phys.***B 255**(1985) 93 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [4]J. Polchinski and Y. Cai,
*Consistency of Open Superstring Theories*,*Nucl. Phys.***B 296**(1988) 91 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [5]A. Sagnotti,
*Some properties of open string theories*, in proceedings of the*International Workshop on Supersymmetry and Unification of Fundamental Interactions (SUSY 95)*, Palaiseau, France, 15-19 May 1995, pp. 473-484 [hep-th/9509080] [INSPIRE]. - [6]R. Blumenhagen, B. Körs, D. Lüst and S. Stieberger,
*Four-dimensional String Compactifications with D-branes, Orientifolds and Fluxes*,*Phys. Rept.***445**(2007) 1 [hep-th/0610327] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [7]L.E. Ibanez and A.M. Uranga,
*String theory and particle physics: An introduction to string phenomenology*, Cambridge University Press (2012).Google Scholar - [8]V. Kumar and W. Taylor,
*String Universality in Six Dimensions*,*Adv. Theor. Math. Phys.***15**(2011) 325 [arXiv:0906.0987] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar - [9]V. Kumar, D.R. Morrison and W. Taylor,
*Mapping*6*D N*= 1*supergravities to F-theory*,*JHEP***02**(2010) 099 [arXiv:0911.3393] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [10]V. Kumar, D.R. Morrison and W. Taylor,
*Global aspects of the space of*6*D N*= 1*supergravities*,*JHEP***11**(2010) 118 [arXiv:1008.1062] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [11]N. Seiberg and W. Taylor,
*Charge Lattices and Consistency of*6*D Supergravity*,*JHEP***06**(2011) 001 [arXiv:1103.0019] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [12]D.S. Park and W. Taylor,
*Constraints on*6*D Supergravity Theories with Abelian Gauge Symmetry*,*JHEP***01**(2012) 141 [arXiv:1110.5916] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [13]T.W. Grimm and W. Taylor,
*Structure in*6*D and*4*D N*= 1*supergravity theories from F-theory*,*JHEP***10**(2012) 105 [arXiv:1204.3092] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [14]M.B. Green, J.H. Schwarz and P.C. West,
*Anomaly Free Chiral Theories in Six-Dimensions*,*Nucl. Phys.***B 254**(1985) 327 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [15]A. Sagnotti,
*A Note on the Green-Schwarz mechanism in open string theories*,*Phys. Lett.***B 294**(1992) 196 [hep-th/9210127] [INSPIRE].ADSCrossRefGoogle Scholar - [16]V. Sadov,
*Generalized Green-Schwarz mechanism in F-theory*,*Phys. Lett.***B 388**(1996) 45 [hep-th/9606008] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [17]A. Grassi and D.R. Morrison,
*Group representations and the Euler characteristic of elliptically fibered Calabi-Yau threefolds*, math.AG/0005196 [INSPIRE]. - [18]A. Grassi and D.R. Morrison,
*Anomalies and the Euler characteristic of elliptic Calabi-Yau threefolds*,*Commun. Num. Theor. Phys.***6**(2012) 51 [arXiv:1109.0042] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar - [19]D.S. Park,
*Anomaly Equations and Intersection Theory*,*JHEP***01**(2012) 093 [arXiv:1111.2351] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [20]T.W. Grimm and H. Hayashi,
*F-theory fluxes, Chirality and Chern-Simons theories*,*JHEP***03**(2012) 027 [arXiv:1111.1232] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [21]F. Bonetti and T.W. Grimm,
*Six-dimensional*(1, 0)*effective action of F-theory via M-theory on Calabi-Yau threefolds*,*JHEP***05**(2012) 019 [arXiv:1112.1082] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [22]M. Cvetič, T.W. Grimm and D. Klevers,
*Anomaly Cancellation And Abelian Gauge Symmetries In F-theory*,*JHEP***02**(2013) 101 [arXiv:1210.6034] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [23]T.W. Grimm and A. Kapfer,
*Anomaly Cancelation in Field Theory and F-theory on a Circle*,*JHEP***05**(2016) 102 [arXiv:1502.05398] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [24]M. Esole and S.-H. Shao,
*M-theory on Elliptic Calabi-Yau Threefolds and*6*d Anomalies*, arXiv:1504.01387 [INSPIRE]. - [25]L. Lin and T. Weigand,
*G*_{4}*-flux and standard model vacua in F-theory*,*Nucl. Phys.***B 913**(2016) 209 [arXiv:1604.04292] [INSPIRE].ADSCrossRefMATHGoogle Scholar - [26]M. Bies, C. Mayrhofer, C. Pehle and T. Weigand,
*Chow groups, Deligne cohomology and massless matter in F-theory*, arXiv:1402.5144 [INSPIRE]. - [27]M. Bies, C. Mayrhofer and T. Weigand,
*Gauge Backgrounds and Zero-Mode Counting in F-theory*, arXiv:1706.04616 [INSPIRE]. - [28]S. Krause, C. Mayrhofer and T. Weigand,
*Gauge Fluxes in F-theory and Type IIB Orientifolds*,*JHEP***08**(2012) 119 [arXiv:1202.3138] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [29]M. Bershadsky, K.A. Intriligator, S. Kachru, D.R. Morrison, V. Sadov and C. Vafa,
*Geometric singularities and enhanced gauge symmetries*,*Nucl. Phys.***B 481**(1996) 215 [hep-th/9605200] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [30]T. Shioda,
*On elliptic modular surfaces*,*J. Math. Soc. Japan***24**(1972) 20.ADSMathSciNetCrossRefMATHGoogle Scholar - [31]J.T. Tate,
*Algebraic cycles and poles of zeta functions*, in*Arithmetical Algebraic Geometry (Proceedings of a Conference held at Purdue University, Dec. 1963)*, Harper & Row, New York U.S.A. (1965), pp. 93-110.Google Scholar - [32]J. Tate,
*On the conjectures of Birch and Swinnerton-Dyer and a geometric analog*,*Séminaire Bourbaki***9**(1964-1966) 415.Google Scholar - [33]R. Wazir,
*Arithmetic on Elliptic Threefolds*, math.NT/0112259. - [34]K.A. Intriligator, D.R. Morrison and N. Seiberg,
*Five-dimensional supersymmetric gauge theories and degenerations of Calabi-Yau spaces*,*Nucl. Phys.***B 497**(1997) 56 [hep-th/9702198] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [35]H. Hayashi, C. Lawrie, D.R. Morrison and S. Schäfer-Nameki,
*Box Graphs and Singular Fibers*,*JHEP***05**(2014) 048 [arXiv:1402.2653] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [36]M. Esole, S.-H. Shao and S.-T. Yau,
*Singularities and Gauge Theory Phases*,*Adv. Theor. Math. Phys.***19**(2015) 1183 [arXiv:1402.6331] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar - [37]B.R. Greene, D.R. Morrison and M.R. Plesser,
*Mirror manifolds in higher dimension*,*Commun. Math. Phys.***173**(1995) 559 [hep-th/9402119] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [38]A.P. Braun and T. Watari,
*The Vertical, the Horizontal and the Rest: anatomy of the middle cohomology of Calabi-Yau fourfolds and F-theory applications*,*JHEP***01**(2015) 047 [arXiv:1408.6167] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [39]A.P. Braun, A. Collinucci and R. Valandro,
*G-flux in F-theory and algebraic cycles*,*Nucl. Phys.***B 856**(2012) 129 [arXiv:1107.5337] [INSPIRE].ADSCrossRefMATHGoogle Scholar - [40]C. Beasley, J.J. Heckman and C. Vafa,
*GUTs and Exceptional Branes in F-theory — I*,*JHEP*01 (2009)**058**[arXiv:0802.3391] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [41]A.P. Braun, A. Collinucci and R. Valandro,
*Hypercharge flux in F-theory and the stable Sen limit*,*JHEP***07**(2014) 121 [arXiv:1402.4096] [INSPIRE].ADSCrossRefGoogle Scholar - [42]J. Borchmann, C. Mayrhofer, E. Palti and T. Weigand, SU(5)
*Tops with Multiple U*(1)*s in F-theory*,*Nucl. Phys.***B 882**(2014) 1 [arXiv:1307.2902] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [43]T.W. Grimm and T. Weigand,
*On Abelian Gauge Symmetries and Proton Decay in Global F-theory GUTs*,*Phys. Rev.***D 82**(2010) 086009 [arXiv:1006.0226] [INSPIRE].ADSGoogle Scholar - [44]S. Krause, C. Mayrhofer and T. Weigand,
*G*_{4}*-flux, chiral matter and singularity resolution in F-theory compactifications*,*Nucl. Phys.***B 858**(2012) 1 [arXiv:1109.3454] [INSPIRE].ADSCrossRefMATHGoogle Scholar - [45]E. Witten,
*On flux quantization in M-theory and the effective action*,*J. Geom. Phys.***22**(1997) 1 [hep-th/9609122] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [46]J. Erler,
*Anomaly cancellation in six-dimensions*,*J. Math. Phys.***35**(1994) 1819 [hep-th/9304104] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [47]W. Fulton,
*Intersection Theory*, Princeton University Press (1993).Google Scholar - [48]D. Cox, J. Little and H. Schenck,
*Toric Varieties*, Graduate Studies in Mathematics, American Mathematical Society (2011).Google Scholar - [49]L. Lin, C. Mayrhofer, O. Till and T. Weigand,
*Fluxes in F-theory Compactifications on Genus-One Fibrations*,*JHEP***01**(2016) 098 [arXiv:1508.00162] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [50]S. Schäfer-Nameki and T. Weigand,
*F-theory and*2*d*(0, 2)*theories*,*JHEP***05**(2016) 059 [arXiv:1601.02015] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [51]F. Apruzzi, F. Hassler, J.J. Heckman and I.V. Melnikov,
*UV Completions for Non-Critical Strings*,*JHEP***07**(2016) 045 [arXiv:1602.04221] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [52]F. Apruzzi, F. Hassler, J.J. Heckman and I.V. Melnikov,
*From*6*D SCFTs to Dynamic GLSMs*,*Phys. Rev.***D 96**(2017) 066015 [arXiv:1610.00718] [INSPIRE].ADSGoogle Scholar - [53]C. Lawrie, S. Schäfer-Nameki and T. Weigand,
*The gravitational sector of*2*d*(0, 2)*F-theory vacua*,*JHEP***05**(2017) 103 [arXiv:1612.06393] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [54]C. Lawrie, S. Schäfer-Nameki and T. Weigand,
*Chiral*2*d theories from N*= 4*SYM with varying coupling*,*JHEP***04**(2017) 111 [arXiv:1612.05640] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [55]A.M. Uranga,
*D-brane probes, RR tadpole cancellation and k-theory charge*,*Nucl. Phys.***B 598**(2001) 225 [hep-th/0011048] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [56]I. Garcia-Etxebarria and A.M. Uranga,
*From F/M-theory to k-theory and back*,*JHEP***02**(2006) 008 [hep-th/0510073] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar