Journal of High Energy Physics

, 2017:98 | Cite as

Production of vector resonances at the LHC via WZ-scattering: a unitarized EChL analysis

  • R. L. Delgado
  • A. Dobado
  • D. Espriu
  • C. Garcia-GarciaEmail author
  • M. J. Herrero
  • X. Marcano
  • J. J. Sanz-Cillero
Open Access
Regular Article - Theoretical Physics


In the present work we study the production of vector resonances at the LHC by means of the vector boson scattering WZWZ and explore the sensitivities to these resonances for the expected future LHC luminosities. We are assuming that these vector resonances are generated dynamically from the self interactions of the longitudinal gauge bosons, WL and ZL, and work under the framework of the electroweak chiral Lagrangian to describe in a model independent way the supposedly strong dynamics of these modes. The properties of the vector resonances, mass, width and couplings to the W and Z gauge bosons are derived from the inverse amplitude method approach. We implement all these features into a single model, the IAM-MC, adapted for MonteCarlo, built in a Lagrangian language in terms of the electroweak chiral Lagrangian and a chiral Lagrangian for the vector resonances, which mimics the resonant behavior of the IAM and provides unitary amplitudes. The model has been implemented in MadGraph, allowing us to perform a realistic study of the signal versus background events at the LHC. In particular, we have focused our study on the ppWZjj type of events, discussing first on the potential of the hadronic and semileptonic channels of the final WZ, and next exploring in more detail the most clear signals. These are provided by the leptonic decays of the gauge bosons, leading to a final state with 1 + 1 2 + νjj,  = e, μ, having a very distinctive signature, and showing clearly the emergence of the resonances with masses in the range of 1.5–2.5 TeV, which we have explored.


Beyond Standard Model Chiral Lagrangians Effective Field Theories Higgs Physics 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].
  2. [2]
    T. Appelquist and C.W. Bernard, Strongly Interacting Higgs Bosons, Phys. Rev. D 22 (1980) 200 [INSPIRE].ADSGoogle Scholar
  3. [3]
    A.C. Longhitano, Heavy Higgs Bosons in the Weinberg-Salam Model, Phys. Rev. D 22 (1980) 1166 [INSPIRE].ADSGoogle Scholar
  4. [4]
    A.C. Longhitano, Low-Energy Impact of a Heavy Higgs Boson Sector, Nucl. Phys. B 188 (1981) 118 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    M.S. Chanowitz and M.K. Gaillard, The TeV Physics of Strongly Interacting W’s and Z’s, Nucl. Phys. B 261 (1985) 379 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    O. Cheyette and M.K. Gaillard, The Effective One Loop Action in the Strongly Interacting Standard Electroweak Theory, Phys. Lett. B 197 (1987) 205 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    A. Dobado and M.J. Herrero, Phenomenological Lagrangian Approach to the Symmetry Breaking Sector of the Standard Model, Phys. Lett. B 228 (1989) 495 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    A. Dobado and M.J. Herrero, Testing the Hypothesis of Strongly Interacting Longitudinal Weak Bosons in Electron-Positron Collisions at TeV Energies, Phys. Lett. B 233 (1989) 505 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    S. Weinberg, Phenomenological Lagrangians, Physica A 96 (1979) 327 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    J. Gasser and H. Leutwyler, Chiral Perturbation Theory: Expansions in the Mass of the Strange Quark, Nucl. Phys. B 250 (1985) 465 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    J. Gasser and H. Leutwyler, Chiral Perturbation Theory to One Loop, Annals Phys. 158 (1984) 142 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    A. Dobado, D. Espriu and M.J. Herrero, Chiral Lagrangians as a tool to probe the symmetry breaking sector of the SM at LEP, Phys. Lett. B 255 (1991) 405 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    D. Espriu and M.J. Herrero, Chiral Lagrangians and precision tests of the symmetry breaking sector of the Standard Model, Nucl. Phys. B 373 (1992) 117 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    A. Dobado, M.J. Herrero and J. Terron, The Role of Chiral Lagrangians in Strongly Interacting W L W L Signals at pp Supercolliders, Z. Phys. C 50 (1991) 205 [INSPIRE].Google Scholar
  15. [15]
    A. Dobado, M.J. Herrero and J. Terron, W ± Z 0 signals from the strongly interacting symmetry breaking sector, Z. Phys. C 50 (1991) 465 [INSPIRE].Google Scholar
  16. [16]
    A. Dobado, M.J. Herrero, J.R. Pelaez, E. Ruiz Morales and M.T. Urdiales, Learning about the strongly interacting symmetry breaking sector at LHC, Phys. Lett. B 352 (1995) 400 [hep-ph/9502309] [INSPIRE].
  17. [17]
    A. Dobado, M.J. Herrero, J.R. Pelaez and E. Ruiz Morales, CERN LHC sensitivity to the resonance spectrum of a minimal strongly interacting electroweak symmetry breaking sector, Phys. Rev. D 62 (2000) 055011 [hep-ph/9912224] [INSPIRE].
  18. [18]
    R. Alonso, M.B. Gavela, L. Merlo, S. Rigolin and J. Yepes, The Effective Chiral Lagrangian for a Light Dynamical “Higgs Particle”, Phys. Lett. B 722 (2013) 330 [Erratum ibid. B 726 (2013) 926] [arXiv:1212.3305] [INSPIRE].
  19. [19]
    G. Buchalla, O. Catà and C. Krause, Complete Electroweak Chiral Lagrangian with a Light Higgs at NLO, Nucl. Phys. B 880 (2014) 552 [Erratum ibid. B 913 (2016) 475] [arXiv:1307.5017] [INSPIRE].
  20. [20]
    D. Espriu and B. Yencho, Longitudinal WW scattering in light of the “Higgs boson” discovery, Phys. Rev. D 87 (2013) 055017 [arXiv:1212.4158] [INSPIRE].ADSGoogle Scholar
  21. [21]
    R.L. Delgado, A. Dobado and F.J. Llanes-Estrada, Light ‘Higgs’, yet strong interactions, J. Phys. G 41 (2014) 025002 [arXiv:1308.1629] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    R.L. Delgado, A. Dobado and F.J. Llanes-Estrada, One-loop W L W L and Z L Z L scattering from the electroweak Chiral Lagrangian with a light Higgs-like scalar, JHEP 02 (2014) 121 [arXiv:1311.5993] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    I. Brivio et al., Disentangling a dynamical Higgs, JHEP 03 (2014) 024 [arXiv:1311.1823] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    D. Espriu, F. Mescia and B. Yencho, Radiative corrections to W L W L scattering in composite Higgs models, Phys. Rev. D 88 (2013) 055002 [arXiv:1307.2400] [INSPIRE].ADSGoogle Scholar
  25. [25]
    D. Espriu and F. Mescia, Unitarity and causality constraints in composite Higgs models, Phys. Rev. D 90 (2014) 015035 [arXiv:1403.7386] [INSPIRE].ADSGoogle Scholar
  26. [26]
    R.L. Delgado, A. Dobado, M.J. Herrero and J.J. Sanz-Cillero, One-loop γγ → W L+ W Land γγ → Z L Z L from the Electroweak Chiral Lagrangian with a light Higgs-like scalar, JHEP 07 (2014) 149 [arXiv:1404.2866] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    G. Buchalla, O. Catà, A. Celis and C. Krause, Fitting Higgs Data with Nonlinear Effective Theory, Eur. Phys. J. C 76 (2016) 233 [arXiv:1511.00988] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  28. [28]
    P. Arnan, D. Espriu and F. Mescia, Interpreting a 2 TeV resonance in WW scattering, Phys. Rev. D 93 (2016) 015020 [arXiv:1508.00174] [INSPIRE].ADSGoogle Scholar
  29. [29]
    LHC Higgs Cross section Working Group collaboration, D. de Florian et al., Handbook of LHC Higgs Cross sections: 4. Deciphering the Nature of the Higgs Sector, CYRM-2017-002 [CERN-2017-002-M] [arXiv:1610.07922] [INSPIRE].
  30. [30]
    A. Falkowski, F. Riva and A. Urbano, Higgs at last, JHEP 11 (2013) 111 [arXiv:1303.1812] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    CMS collaboration, Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV, Eur. Phys. J. C 75 (2015) 212 [arXiv:1412.8662] [INSPIRE].
  32. [32]
    ATLAS collaboration, Evidence for Electroweak Production of W ± W ± jj in pp Collisions at \( \sqrt{s}=8 \) TeV with the ATLAS Detector, Phys. Rev. Lett. 113 (2014) 141803 [arXiv:1405.6241] [INSPIRE].
  33. [33]
    ATLAS collaboration, Updated coupling measurements of the Higgs boson with the ATLAS detector using up to 25 fb −1 of proton-proton collision data, ATLAS-CONF-2014-009 (2014).
  34. [34]
    M. Fabbrichesi, M. Pinamonti, A. Tonero and A. Urbano, Vector boson scattering at the LHC: A study of the WWWW channels with the Warsaw cut, Phys. Rev. D 93 (2016) 015004 [arXiv:1509.06378] [INSPIRE].ADSGoogle Scholar
  35. [35]
    ATLAS collaboration, Search for anomalous electroweak production of WW/WZ in association with a high-mass dijet system in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 95 (2017) 032001 [arXiv:1609.05122] [INSPIRE].
  36. [36]
    A. Pich, I. Rosell and J.J. Sanz-Cillero, One-Loop Calculation of the Oblique S Parameter in Higgsless Electroweak Models, JHEP 08 (2012) 106 [arXiv:1206.3454] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    A. Pich, I. Rosell and J.J. Sanz-Cillero, Viability of strongly-coupled scenarios with a light Higgs-like boson, Phys. Rev. Lett. 110 (2013) 181801 [arXiv:1212.6769] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    A. Pich, I. Rosell and J.J. Sanz-Cillero, Oblique S and T Constraints on Electroweak Strongly-Coupled Models with a Light Higgs, JHEP 01 (2014) 157 [arXiv:1310.3121] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    A. Pich, I. Rosell, J. Santos and J.J. Sanz-Cillero, Low-energy signals of strongly-coupled electroweak symmetry-breaking scenarios, Phys. Rev. D 93 (2016) 055041 [arXiv:1510.03114] [INSPIRE].ADSGoogle Scholar
  40. [40]
    A. Pich, I. Rosell, J. Santos and J.J. Sanz-Cillero, Fingerprints of heavy scales in electroweak effective Lagrangians, JHEP 04 (2017) 012 [arXiv:1609.06659] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    G. Ecker, J. Gasser, H. Leutwyler, A. Pich and E. de Rafael, Chiral Lagrangians for Massive Spin 1 Fields, Phys. Lett. B 223 (1989) 425 [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    A. Alboteanu, W. Kilian and J. Reuter, Resonances and Unitarity in Weak Boson Scattering at the LHC, JHEP 11 (2008) 010 [arXiv:0806.4145] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    R.L. Delgado, A. Dobado and F.J. Llanes-Estrada, Possible new resonance from W L W L -hh interchannel coupling, Phys. Rev. Lett. 114 (2015) 221803 [arXiv:1408.1193] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    A. Dobado, F.-K. Guo and F.J. Llanes-Estrada, Production cross section estimates for strongly-interacting Electroweak Symmetry Breaking Sector resonances at particle colliders, Commun. Theor. Phys. 64 (2015) 701 [arXiv:1508.03544] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    T. Corbett, O.J.P. É boli and M.C. Gonzalez-Garcia, Inverse amplitude method for the perturbative electroweak symmetry breaking sector: The singlet Higgs portal as a study case, Phys. Rev. D 93 (2016) 015005 [arXiv:1509.01585] [INSPIRE].
  46. [46]
    D. Buarque Franzosi and P. Ferrarese, Implications of Vector Boson Scattering Unitarity in Composite Higgs Models, Phys. Rev. D 96 (2017) 055037 [arXiv:1705.02787] [INSPIRE].ADSGoogle Scholar
  47. [47]
    T.N. Truong, Chiral Perturbation Theory and Final State Theorem, Phys. Rev. Lett. 61 (1988) 2526 [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    A. Dobado, M.J. Herrero and T.N. Truong, Unitarized Chiral Perturbation Theory for Elastic Pion-Pion Scattering, Phys. Lett. B 235 (1990) 134 [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    A. Dobado and J.R. Pelaez, A global fit of ππ and πK elastic scattering in ChPT with dispersion relations, Phys. Rev. D 47 (1993) 4883 [hep-ph/9301276] [INSPIRE].
  50. [50]
    T. Hannah, Unitarity, chiral perturbation theory and K l4 decays, Phys. Rev. D 51 (1995) 103 [INSPIRE].ADSGoogle Scholar
  51. [51]
    A. Dobado, M.J. Herrero and T.N. Truong, Study of the Strongly Interacting Higgs Sector, Phys. Lett. B 235 (1990) 129 [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    J.M. Cornwall, D.N. Levin and G. Tiktopoulos, Derivation of Gauge Invariance from High-Energy Unitarity Bounds on the s Matrix, Phys. Rev. D 10 (1974) 1145 [Erratum ibid. D 11 (1975) 972] [INSPIRE].
  53. [53]
    C.E. Vayonakis, Born Helicity Amplitudes and Cross-Sections in Nonabelian Gauge Theories, Lett. Nuovo Cim. 17 (1976) 383 [INSPIRE].CrossRefGoogle Scholar
  54. [54]
    B.W. Lee, C. Quigg and H.B. Thacker, Weak Interactions at Very High-Energies: The Role of the Higgs Boson Mass, Phys. Rev. D 16 (1977) 1519 [INSPIRE].ADSGoogle Scholar
  55. [55]
    G.J. Gounaris, R. Kogerler and H. Neufeld, Relationship Between Longitudinally Polarized Vector Bosons and their Unphysical Scalar Partners, Phys. Rev. D 34 (1986) 3257 [INSPIRE].ADSGoogle Scholar
  56. [56]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    S. Haywood et al., Electroweak physics, hep-ph/0003275 [INSPIRE].
  58. [58]
    K. Doroba et al., The W L W L Scattering at the LHC: Improving the Selection Criteria, Phys. Rev. D 86 (2012) 036011 [arXiv:1201.2768] [INSPIRE].ADSGoogle Scholar
  59. [59]
    M. Szleper, The Higgs boson and the physics of WW scattering before and after Higgs discovery, arXiv:1412.8367 [INSPIRE].
  60. [60]
    ATLAS collaboration, Measurements of W ± Z production cross sections in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector and limits on anomalous gauge boson self-couplings, Phys. Rev. D 93 (2016) 092004 [arXiv:1603.02151] [INSPIRE].
  61. [61]
    M.J. Herrero and E. Ruiz Morales, The Electroweak chiral Lagrangian for the Standard Model with a heavy Higgs, Nucl. Phys. B 418 (1994) 431 [hep-ph/9308276] [INSPIRE].
  62. [62]
    M.J. Herrero and E. Ruiz Morales, Nondecoupling effects of the SM Higgs boson to one loop, Nucl. Phys. B 437 (1995) 319 [hep-ph/9411207] [INSPIRE].
  63. [63]
    A. Dobado and J.R. Peláez, On The Equivalence theorem in the chiral perturbation theory description of the symmetry breaking sector of the standard model, Nucl. Phys. B 425 (1994) 110 [Erratum ibid. B 434 (1995) 475] [hep-ph/9401202] [INSPIRE].
  64. [64]
    A. Dobado and J.R. Pelaez, The equivalence theorem for chiral lagrangians, Phys. Lett. B 329 (1994) 469 [Addendum ibid. B 335 (1994) 554] [hep-ph/9404239] [INSPIRE].
  65. [65]
    A. Dobado, J.R. Pelaez and M.T. Urdiales, Applicability constraints of the equivalence theorem, Phys. Rev. D 56 (1997) 7133 [hep-ph/9702206] [INSPIRE].
  66. [66]
    H.-J. He, Y.-P. Kuang and X.-y. Li, Proof of the equivalence theorem in the chiral Lagrangian formalism, Phys. Lett. B 329 (1994) 278 [hep-ph/9403283] [INSPIRE].
  67. [67]
    T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].
  68. [68]
    T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].
  69. [69]
    S. Dawson and G. Valencia, Heavy fermion effects on longitudinal gauge boson scattering, Phys. Lett. B 246 (1990) 156 [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    J.R. Pelaez, From controversy to precision on the sigma meson: a review on the status of the non-ordinary f 0(500) resonance, Phys. Rept. 658 (2016) 1 [arXiv:1510.00653] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    R.L. Delgado, A. Dobado and F.J. Llanes-Estrada, Unitarity, analyticity, dispersion relations and resonances in strongly interacting W L W L , Z L Z L and hh scattering, Phys. Rev. D 91 (2015) 075017 [arXiv:1502.04841] [INSPIRE].
  72. [72]
    S. Coleman, Dilatations, in Aspects of Symmetry: Selected Erice Lectures, pg. I-Vi, Cambridge University Press (1985).Google Scholar
  73. [73]
    E. Halyo, Technidilaton or Higgs?, Mod. Phys. Lett. A 8 (1993) 275 [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    W.D. Goldberger, B. Grinstein and W. Skiba, Distinguishing the Higgs boson from the dilaton at the Large Hadron Collider, Phys. Rev. Lett. 100 (2008) 111802 [arXiv:0708.1463] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    G. D’Ambrosio and D. Espriu, Vector meson decays from the extended chiral quark model, Phys. Lett. B 638 (2006) 487 [hep-ph/0602008] [INSPIRE].
  76. [76]
    M. Froissart, Asymptotic behavior and subtractions in the Mandelstam representation, Phys. Rev. 123 (1961) 1053 [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    NNPDF collaboration, R.D. Ball et al., Parton distributions with QED corrections, Nucl. Phys. B 877 (2013) 290 [arXiv:1308.0598] [INSPIRE].
  78. [78]
    A. Barachetti, L. Rossi and A. Szeberenyi, Final Project Report: Deliverable D1.14, CERN-ACC-2016-0007 (2016).
  79. [79]
    CMS collaboration, Search for massive resonances in dijet systems containing jets tagged as W or Z boson decays in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP 08 (2014) 173 [arXiv:1405.1994] [INSPIRE].
  80. [80]
    ATLAS collaboration, Identification of boosted, hadronically-decaying W and Z bosons in \( \sqrt{s}=13 \) TeV Monte Carlo Simulations for ATLAS, ATL-PHYS-PUB-2015-033 (2015).
  81. [81]
    ATLAS collaboration, Search for high-mass diboson resonances with boson-tagged jets in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 12 (2015) 055 [arXiv:1506.00962] [INSPIRE].
  82. [82]
    J.J. Heinrich, Reconstruction of boosted W ± and Z 0 bosons from fat jets, CERN-THESIS-2014-152, 12 September 2014.
  83. [83]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Departamento de Física Teórica IUniversidad Complutense de MadridMadridSpain
  2. 2.Departament de Física Quàntica i Astrofísica and Institut de Ciències del Cosmos (ICCUB)Universitat de BarcelonaBarcelonaSpain
  3. 3.Departamento de Física Teórica and Instituto de Física Teórica, IFT-UAM/CSICUniversidad Autónoma de MadridMadridSpain

Personalised recommendations