Advertisement

Journal of High Energy Physics

, 2017:89 | Cite as

Superconformal Chern-Simons theories from del Pezzo geometries

  • Sanefumi MoriyamaEmail author
  • Tomoki Nosaka
  • Katsuya Yano
Open Access
Regular Article - Theoretical Physics

Abstract

We present an explicit expression for the grand potential of the U(N )3 superconformal Chern-Simons theory with the Chern-Simons levels being (k, 0, −k). From the viewpoint of the Newton polygon, it is expected that the grand potential is given by the free energy of the topological string theory on the local D5 del Pezzo geometry, though the explicit identification was a puzzle for years. We show how the expectation is realized explicitly. As a bonus, we can also study the \( {\mathbb{Z}}_2 \) orbifold of this theory and find the grand potential is now given in terms of the local E7 del Pezzo geometry.

Keywords

Chern-Simons Theories Matrix Models Nonperturbative Effects Topological Strings 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M 2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    K. Hosomichi, K.-M. Lee, S. Lee, S. Lee and J. Park, N = 5, 6 superconformal Chern-Simons theories and M 2-branes on orbifolds, JHEP 09 (2008) 002 [arXiv:0806.4977] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    O. Aharony, O. Bergman and D.L. Jafferis, Fractional M 2-branes, JHEP 11 (2008) 043 [arXiv:0807.4924] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    A. Kapustin, B. Willett and I. Yaakov, Exact results for Wilson loops in superconformal Chern-Simons theories with matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    Y. Hatsuda, S. Moriyama and K. Okuyama, Instanton effects in ABJM theory from Fermi gas approach, JHEP 01 (2013) 158 [arXiv:1211.1251] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    M. Mariño and P. Putrov, ABJM theory as a Fermi gas, J. Stat. Mech. 03 (2012) P03001 [arXiv:1110.4066] [INSPIRE].MathSciNetGoogle Scholar
  8. [8]
    Y. Hatsuda, M. Mariño, S. Moriyama and K. Okuyama, Non-perturbative effects and the refined topological string, JHEP 09 (2014) 168 [arXiv:1306.1734] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    N. Drukker, M. Mariño and P. Putrov, From weak to strong coupling in ABJM theory, Commun. Math. Phys. 306 (2011) 511 [arXiv:1007.3837] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    C.P. Herzog, I.R. Klebanov, S.S. Pufu and T. Tesileanu, Multi-matrix models and tri-Sasaki Einstein spaces, Phys. Rev. D 83 (2011) 046001 [arXiv:1011.5487] [INSPIRE].ADSGoogle Scholar
  11. [11]
    N. Drukker, M. Mariño and P. Putrov, Nonperturbative aspects of ABJM theory, JHEP 11 (2011) 141 [arXiv:1103.4844] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    H. Fuji, S. Hirano and S. Moriyama, Summing up all genus free energy of ABJM matrix model, JHEP 08 (2011) 001 [arXiv:1106.4631] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    Y. Hatsuda, S. Moriyama and K. Okuyama, Exact results on the ABJM Fermi gas, JHEP 10 (2012) 020 [arXiv:1207.4283] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    P. Putrov and M. Yamazaki, Exact ABJM partition function from TBA, Mod. Phys. Lett. A 27 (2012) 1250200 [arXiv:1207.5066] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    F. Calvo and M. Mariño, Membrane instantons from a semiclassical TBA, JHEP 05 (2013) 006 [arXiv:1212.5118] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    Y. Hatsuda, S. Moriyama and K. Okuyama, Instanton bound states in ABJM theory, JHEP 05 (2013) 054 [arXiv:1301.5184] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  17. [17]
    A. Cagnazzo, D. Sorokin and L. Wulff, String instanton in AdS 4 × CP 3, JHEP 05 (2010) 009 [arXiv:0911.5228] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  18. [18]
    Y. Hatsuda, S. Moriyama and K. Okuyama, Exact instanton expansion of the ABJM partition function, Prog. Theor. Exp. Phys. 2015 (2015) 11B104 [arXiv:1507.01678] [INSPIRE].
  19. [19]
    M. Mariño, Localization at large-N in Chern-Simons-matter theories, J. Phys. A 50 (2017) 443007 [arXiv:1608.02959] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  20. [20]
    A. Grassi, Y. Hatsuda and M. Mariño, Topological strings from quantum mechanics, Annales Henri Poincaré 17 (2016) 3177 [arXiv:1410.3382] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    D. Gaiotto and E. Witten, Janus configurations, Chern-Simons couplings, and the theta-angle in N = 4 super Yang-Mills theory, JHEP 06 (2010) 097 [arXiv:0804.2907] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  22. [22]
    K. Hosomichi, K.-M. Lee, S. Lee, S. Lee and J. Park, N = 4 superconformal Chern-Simons theories with hyper and twisted hyper multiplets, JHEP 07 (2008) 091 [arXiv:0805.3662] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    Y. Imamura and K. Kimura, On the moduli space of elliptic Maxwell-Chern-Simons theories, Prog. Theor. Phys. 120 (2008) 509 [arXiv:0806.3727] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  24. [24]
    S. Terashima and F. Yagi, Orbifolding the membrane action, JHEP 12 (2008) 041 [arXiv:0807.0368] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    Y. Imamura and K. Kimura, N = 4 Chern-Simons theories with auxiliary vector multiplets, JHEP 10 (2008) 040 [arXiv:0807.2144] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    S. Moriyama and T. Nosaka, Exact instanton expansion of superconformal Chern-Simons theories from topological strings, JHEP 05 (2015) 022 [arXiv:1412.6243] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    Y. Hatsuda, M. Honda, S. Moriyama and K. Okuyama, ABJM Wilson loops in arbitrary representations, JHEP 10 (2013) 168 [arXiv:1306.4297] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    S. Matsumoto and S. Moriyama, ABJ fractional brane from ABJM Wilson loop, JHEP 03 (2014) 079 [arXiv:1310.8051] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    B. Assel, N. Drukker and J. Felix, Partition functions of 3d \( \widehat{D} \) -quivers and their mirror duals from 1d free fermions, JHEP 08 (2015) 071 [arXiv:1504.07636] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    S. Moriyama and T. Nosaka, Superconformal Chern-Simons partition functions of affine D-type quiver from Fermi gas, JHEP 09 (2015) 054 [arXiv:1504.07710] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    T. Nosaka, Instanton effects in ABJM theory with general R-charge assignments, JHEP 03 (2016) 059 [arXiv:1512.02862] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  32. [32]
    S. Moriyama and T. Suyama, Orthosymplectic Chern-Simons matrix model and chirality projection, JHEP 04 (2016) 132 [arXiv:1601.03846] [INSPIRE].ADSzbMATHGoogle Scholar
  33. [33]
    S. Moriyama and T. Nosaka, Orientifold ABJM matrix model: chiral projections and worldsheet instantons, JHEP 06 (2016) 068 [arXiv:1603.00615] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    S. Matsuno and S. Moriyama, Giambelli identity in super Chern-Simons matrix model, J. Math. Phys. 58 (2017) 032301 [arXiv:1603.04124] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    K. Kiyoshige and S. Moriyama, Dualities in ABJM matrix model from closed string viewpoint, JHEP 11 (2016) 096 [arXiv:1607.06414] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    S. Moriyama, S. Nakayama and T. Nosaka, Instanton effects in rank deformed superconformal Chern-Simons theories from topological strings, JHEP 08 (2017) 003 [arXiv:1704.04358] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    M.-X. Huang, A. Klemm and M. Poretschkin, Refined stable pair invariants for E-, M - and [p, q]-strings, JHEP 11 (2013) 112 [arXiv:1308.0619] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  38. [38]
    A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    S. Moriyama and T. Nosaka, Partition functions of superconformal Chern-Simons theories from Fermi gas approach, JHEP 11 (2014) 164 [arXiv:1407.4268] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    S.-S. Kim and F. Yagi, 5d E n Seiberg-Witten curve via toric-like diagram, JHEP 06 (2015) 082 [arXiv:1411.7903] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  41. [41]
    Y. Hatsuda, M. Honda and K. Okuyama, Large-N non-perturbative effects in N = 4 superconformal Chern-Simons theories, JHEP 09 (2015) 046 [arXiv:1505.07120] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    S. Moriyama and T. Nosaka, ABJM membrane instanton from a pole cancellation mechanism, Phys. Rev. D 92 (2015) 026003 [arXiv:1410.4918] [INSPIRE].ADSMathSciNetGoogle Scholar
  43. [43]
    S. Moriyama and T. Suyama, Instanton effects in orientifold ABJM theory, JHEP 03 (2016) 034 [arXiv:1511.01660] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    M. Honda, Exact relations between M 2-brane theories with and without orientifolds, JHEP 06 (2016) 123 [arXiv:1512.04335] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    K. Okuyama, Orientifolding of the ABJ Fermi gas, JHEP 03 (2016) 008 [arXiv:1601.03215] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    F. Benini, S. Benvenuti and Y. Tachikawa, Webs of five-branes and N = 2 superconformal field theories, JHEP 09 (2009) 052 [arXiv:0906.0359] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    M. Honda and S. Moriyama, Instanton effects in orbifold ABJM theory, JHEP 08 (2014) 091 [arXiv:1404.0676] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    N. Seiberg, Five-dimensional SUSY field theories, nontrivial fixed points and string dynamics, Phys. Lett. B 388 (1996) 753 [hep-th/9608111] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    S. Codesido, A. Grassi and M. Mariño, Spectral theory and mirror curves of higher genus, Annales Henri Poincaré 18 (2017) 559 [arXiv:1507.02096] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    S. Codesido, J. Gu and M. Mariño, Operators and higher genus mirror curves, JHEP 02 (2017) 092 [arXiv:1609.00708] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. [51]
    R. Feger and T.W. Kephart, LieART — a Mathematica application for Lie algebras and representation theory, Comput. Phys. Commun. 192 (2015) 166 [arXiv:1206.6379] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Sanefumi Moriyama
    • 1
    • 2
    Email author
  • Tomoki Nosaka
    • 3
  • Katsuya Yano
    • 1
  1. 1.Department of Physics, Graduate School of ScienceOsaka City UniversityOsakaJapan
  2. 2.Osaka City University Advanced Mathematical Institute (OCAMI)OsakaJapan
  3. 3.Korea Institute for Advanced StudySeoulKorea

Personalised recommendations