Journal of High Energy Physics

, 2017:69 | Cite as

Back-to-back heavy quark pair production in semi-inclusive DIS

  • Guang-Peng ZhangEmail author
Open Access
Regular Article - Theoretical Physics


The one-loop correction to heavy quark pair back-to-back production in unpolarized semi-inclusive deep inelastic scattering is given in this work in the framework of transverse momentum dependent(TMD) factorization. Both unpolarized and linearly polarized TMD gluon distribution functions are taken into account. A subtraction method based on diagram expansion is used to get finite hard coefficients. It is found the soft and collinear divergences of one-loop amplitude is proportional to tree level ones and can be expressed through several basic scalar triangle and bubble integrals. The subtraction of these divergences is spin independent. Beyond tree level an additional soft factor related to final heavy quark pair must be added into the factorization formula. This soft factor affects the azimuthal angle distribution of virtual photon in a nonperturbative way. Integrating over virtual photon azimuthal angle we construct three weighted cross sections, which depend on only three additional integrated soft factors. These weighted cross sections can be used to extract linearly polarized gluon distribution function. In addition, lepton azimuthal angle is unintegrated in this work, which provides more observables. All hard coefficients relevant to lepton and virtual photon azimuthal angle distributions are given at one-loop level.


Perturbative QCD Resummation 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    P.J. Mulders and J. Rodrigues, Transverse momentum dependence in gluon distribution and fragmentation functions, Phys. Rev. D 63 (2001) 094021 [hep-ph/0009343] [INSPIRE].
  2. [2]
    D. Boer, W.J. den Dunnen, C. Pisano, M. Schlegel and W. Vogelsang, Linearly Polarized Gluons and the Higgs Transverse Momentum Distribution, Phys. Rev. Lett. 108 (2012) 032002 [arXiv:1109.1444] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    D. Boer, W.J. den Dunnen, C. Pisano and M. Schlegel, Determining the Higgs spin and parity in the diphoton decay channel, Phys. Rev. Lett. 111 (2013) 032002 [arXiv:1304.2654] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    D. Boer and W.J. den Dunnen, TMD evolution and the Higgs transverse momentum distribution, Nucl. Phys. B 886 (2014) 421 [arXiv:1404.6753] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  5. [5]
    P. Sun, B.-W. Xiao and F. Yuan, Gluon Distribution Functions and Higgs Boson Production at Moderate Transverse Momentum, Phys. Rev. D 84 (2011) 094005 [arXiv:1109.1354] [INSPIRE].ADSGoogle Scholar
  6. [6]
    M.G. Echevarria, T. Kasemets, P.J. Mulders and C. Pisano, QCD evolution of (un)polarized gluon TMDPDFs and the Higgs q T -distribution, JHEP 07 (2015) 158 [Erratum ibid. 05 (2017) 073] [arXiv:1502.05354] [INSPIRE].
  7. [7]
    R. Angeles-Martinez et al., Transverse Momentum Dependent (TMD) parton distribution functions: status and prospects, Acta Phys. Polon. B 46 (2015) 2501 [arXiv:1507.05267] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    D. Boer, Linearly polarized gluon effects in unpolarized collisions, in proceedings of the QCD Evolution Workshop (QCD 2015), Newport News, VA, U.S.A., 26-30 May 2015 [PoS(QCDEV2015)023] [arXiv:1510.05915] [INSPIRE].
  9. [9]
    J.-W. Qiu, M. Schlegel and W. Vogelsang, Probing Gluonic Spin-Orbit Correlations in Photon Pair Production, Phys. Rev. Lett. 107 (2011) 062001 [arXiv:1103.3861] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    W.J. den Dunnen, J.P. Lansberg, C. Pisano and M. Schlegel, Accessing the Transverse Dynamics and Polarization of Gluons inside the Proton at the LHC, Phys. Rev. Lett. 112 (2014) 212001 [arXiv:1401.7611] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    G.-P. Zhang, Probing transverse momentum dependent gluon distribution functions from hadronic quarkonium pair production, Phys. Rev. D 90 (2014) 094011 [arXiv:1406.5476] [INSPIRE].ADSGoogle Scholar
  12. [12]
    J. Collins and J.-W. Qiu, k T factorization is violated in production of high-transverse-momentum particles in hadron-hadron collisions, Phys. Rev. D 75 (2007) 114014 [arXiv:0705.2141] [INSPIRE].ADSGoogle Scholar
  13. [13]
    T.C. Rogers and P.J. Mulders, No Generalized TMD-Factorization in Hadro-Production of High Transverse Momentum Hadrons, Phys. Rev. D 81 (2010) 094006 [arXiv:1001.2977] [INSPIRE].ADSGoogle Scholar
  14. [14]
    D. Boer, S.J. Brodsky, P.J. Mulders and C. Pisano, Direct Probes of Linearly Polarized Gluons inside Unpolarized Hadrons, Phys. Rev. Lett. 106 (2011) 132001 [arXiv:1011.4225] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    R. Zhu, P. Sun and F. Yuan, Low Transverse Momentum Heavy Quark Pair Production to Probe Gluon Tomography, Phys. Lett. B 727 (2013) 474 [arXiv:1309.0780] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  16. [16]
    J.P. Ma and G.P. Zhang, QCD Corrections of All Structure Functions in Transverse Momentum Dependent Factorization for Drell-Yan Processes, JHEP 02 (2014) 100 [arXiv:1308.2044] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    M. Diehl and S. Sapeta, On the analysis of lepton scattering on longitudinally or transversely polarized protons, Eur. Phys. J. C 41 (2005) 515 [hep-ph/0503023] [INSPIRE].
  18. [18]
    C. Pisano, D. Boer, S.J. Brodsky, M.G.A. Buffing and P.J. Mulders, Linear polarization of gluons and photons in unpolarized collider experiments, JHEP 10 (2013) 024 [arXiv:1307.3417] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    J.C. Collins and T.C. Rogers, The Gluon Distribution Function and Factorization in Feynman Gauge, Phys. Rev. D 78 (2008) 054012 [arXiv:0805.1752] [INSPIRE].ADSGoogle Scholar
  20. [20]
    N. Kidonakis and G.F. Sterman, Resummation for QCD hard scattering, Nucl. Phys. B 505 (1997) 321 [hep-ph/9705234] [INSPIRE].
  21. [21]
    X.-d. Ji, J.-p. Ma and F. Yuan, QCD factorization for semi-inclusive deep-inelastic scattering at low transverse momentum, Phys. Rev. D 71 (2005) 034005 [hep-ph/0404183] [INSPIRE].
  22. [22]
    J. Collins, Foundations of perturbative QCD, Cambridge University Press (2013).Google Scholar
  23. [23]
    M.G. Echevarria, A. Idilbi and I. Scimemi, Factorization theorem for Drell-Yan at low q T and transverse momentum distributions on-the-light-cone, JHEP 07 (2012) 002 [arXiv:1111.4996] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    J.P. Ma and C. Wang, QCD factorization for quarkonium production in hadron collisions at low transverse momentum, Phys. Rev. D 93 (2016) 014025 [arXiv:1509.04421] [INSPIRE].ADSGoogle Scholar
  25. [25]
    Z. Bern and A.G. Morgan, Massive loop amplitudes from unitarity, Nucl. Phys. B 467 (1996) 479 [hep-ph/9511336] [INSPIRE].
  26. [26]
    J.C. Collins and D.E. Soper, Parton Distribution and Decay Functions, Nucl. Phys. B 194 (1982) 445 [INSPIRE].ADSGoogle Scholar
  27. [27]
    G. Rodrigo, A. Santamaria and M.S. Bilenky, Dimensionally regularized box and phase space integrals involving gluons and massive quarks, J. Phys. G 25 (1999) 1593 [hep-ph/9703360] [INSPIRE].
  28. [28]
    R.K. Ellis and G. Zanderighi, Scalar one-loop integrals for QCD, JHEP 02 (2008) 002 [arXiv:0712.1851] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    D. Boer, P.J. Mulders, C. Pisano and J. Zhou, Asymmetries in Heavy Quark Pair and Dijet Production at an EIC, JHEP 08 (2016) 001 [arXiv:1605.07934] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    A. Denner, Techniques for calculation of electroweak radiative corrections at the one loop level and results for W physics at LEP-200, Fortsch. Phys. 41 (1993) 307 [arXiv:0709.1075] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Department of modern physicsUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations