Journal of High Energy Physics

, 2017:54 | Cite as

Transmutation of a trans-series: the Gross-Witten-Wadia phase transition

  • Anees Ahmed
  • Gerald V. Dunne
Open Access
Regular Article - Theoretical Physics


We study the change in the resurgent asymptotic properties of a trans-series in two parameters, a coupling g2 and a gauge index N, as a system passes through a large N phase transition, using the universal example of the Gross-Witten-Wadia third-order phase transition in the unitary matrix model. This transition is well-studied in the immediate vicinity of the transition point, where it is characterized by a double-scaling limit Painlevé II equation, and also away from the transition point using the pre-string difference equation. Here we present a complementary analysis of the transition at all coupling and all finite N, in terms of a differential equation, using the explicit Tracy-Widom mapping of the Gross-Witten-Wadia partition function to a solution of a Painlevé III equation. This mapping provides a simple method to generate trans-series expansions in all parameter regimes, and to study their transmutation as the parameters are varied. For example, at any finite N the weak coupling expansion is divergent, with a non-perturbative trans-series completion; on the other hand, the strong coupling expansion is convergent, and yet there is still a non-perturbative trans-series completion. We show how the different instanton terms ‘condense’ at the transition point to match with the double-scaling limit trans-series. We also define a uniform large N strong-coupling expansion (a non-linear analogue of uniform WKB), which is much more precise than the conventional large N expansion through the transition region, and apply it to the evaluation of Wilson loops.


Nonperturbative Effects 1/N Expansion Matrix Models 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    D.J. Gross and E. Witten, Possible third order phase transition in the large-N lattice gauge theory, Phys. Rev. D 21 (1980) 446 [INSPIRE].ADSGoogle Scholar
  2. [2]
    S.R. Wadia, A study of U(N) lattice gauge theory in 2-dimensions, arXiv:1212.2906 [INSPIRE].
  3. [3]
    S.R. Wadia, N = ∞ phase transition in a class of exactly soluble model lattice gauge theories, Phys. Lett. 93B (1980) 403 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    R.M. May, Will a large complex system be stable?, Nature 238 (1972) 413.ADSCrossRefGoogle Scholar
  5. [5]
    A.A. Migdal, Loop equations and 1/N expansion, Phys. Rept. 102 (1983) 199 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    E. Brézin and S.R. Wadia, The large N expansion in quantum field theory and statistical physics: from spin systems to 2-dimensional gravity, World Scientific, Singapore (1993).Google Scholar
  7. [7]
    P. Di Francesco, P.H. Ginsparg and J. Zinn-Justin, 2D gravity and random matrices, Phys. Rept. 254 (1995) 1 [hep-th/9306153] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    P. Rossi, M. Campostrini and E. Vicari, The large-N expansion of unitary matrix models, Phys. Rept. 302 (1998) 143 [hep-lat/9609003] [INSPIRE].
  9. [9]
    M. Moshe and J. Zinn-Justin, Quantum field theory in the large-N limit: a review, Phys. Rept. 385 (2003) 69 [hep-th/0306133] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    J.J.M. Verbaarschot and T. Wettig, Random matrix theory and chiral symmetry in QCD, Ann. Rev. Nucl. Part. Sci. 50 (2000) 343 [hep-ph/0003017] [INSPIRE].
  11. [11]
    P.J. Forrester, Log-gases and random matrices, Princeton University Press, Princeton U.S.A. (2010).Google Scholar
  12. [12]
    G. Akemann, J. Baik and Ph. Di Francesco, The Oxford handbook of random matrix theory, Oxford University Press, Oxford U.K. (2011).Google Scholar
  13. [13]
    R.J. Szabo and M. Tierz, Two-dimensional Yang-Mills theory, Painlevé equations and the six-vertex model, J. Phys. A 45 (2012) 085401 [arXiv:1102.3640] [INSPIRE].
  14. [14]
    M. Mariño, Lectures on non-perturbative effects in large-N gauge theories, matrix models and strings, Fortsch. Phys. 62 (2014) 455 [arXiv:1206.6272] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    M. Mariño, Instantons and large N: an introduction to non-perturbative methods in quantum field theory, Cambridge University Press, Cambridge U.K. (2015).Google Scholar
  16. [16]
    H. Neuberger, Nonperturbative contributions in models with a nonanalytic behavior at infinite N, Nucl. Phys. B 179 (1981) 253 [INSPIRE].
  17. [17]
    E. Witten, On quantum gauge theories in two-dimensions, Commun. Math. Phys. 141 (1991) 153 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    E. Witten, Two-dimensional gauge theories revisited, J. Geom. Phys. 9 (1992) 303 [hep-th/9204083] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    M.R. Douglas and V.A. Kazakov, Large-N phase transition in continuum QCD in two-dimensions, Phys. Lett. B 319 (1993) 219 [hep-th/9305047] [INSPIRE].
  20. [20]
    D.J. Gross and A. Matytsin, Instanton induced large-N phase transitions in two-dimensional and four-dimensional QCD, Nucl. Phys. B 429 (1994) 50 [hep-th/9404004] [INSPIRE].
  21. [21]
    D.J. Gross and A. Matytsin, Some properties of large-N two-dimensional Yang-Mills theory, Nucl. Phys. B 437 (1995) 541 [hep-th/9410054] [INSPIRE].
  22. [22]
    P.J. Forrester, S.N. Majumdar and G. Schehr, Non-intersecting Brownian walkers and Yang-Mills theory on the sphere, Nucl. Phys. B 844 (2011) 500 [Erratum ibid. B 857 (2012) 424] [arXiv:1009.2362] [INSPIRE].
  23. [23]
    K. Johansson, The longest increasing subsequence in a random permutation and a unitary random matrix model, Math. Res. Lett. 5 (1998) 63.ADSMathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    J. Baik, P. Deift and K. Johansson, On the distribution of the length of the longest increasing subsequence of random permutations, J. Amer. Math. Soc. 12 (1999) 1119.MathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    V. Dotsenko, Universal randomness, Phys. Usp. 54 (2011) 259 [arXiv:1009.3116].ADSCrossRefGoogle Scholar
  26. [26]
    S.N. Majumdar and G. Schehr, Top eigenvalue of a random matrix: large deviations and third order phase transition, JSTAT (2014) P01012 [arXiv:1311.0580].
  27. [27]
    C.A. Tracy and H. Widom, Level spacing distributions and the Airy kernel, Commun. Math. Phys. 159 (1994) 151 [hep-th/9211141] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    C.A. Tracy and H. Widom, Level spacing distributions and the Bessel kernel, Commun. Math. Phys. 161 (1994) 289 [hep-th/9304063] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    C.A. Tracy and H. Widom, Random unitary matrices, permutations and Painlevé, Commun. Math. Phys. 207 (1999) 665 [math/9811154].
  30. [30]
    J. Écalle, Les Fonctions Resurgentes, volsumes I-III, Publ. Math. Orsay, France (1981).Google Scholar
  31. [31]
    O. Costin, Asymptotics and Borel summability, Chapman & Hall/CRC, U.S.A. (2009.Google Scholar
  32. [32]
    I. Aniceto and R. Schiappa, Nonperturbative ambiguities and the reality of resurgent transseries, Commun. Math. Phys. 335 (2015) 183 [arXiv:1308.1115] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    D. Dorigoni, An introduction to resurgence, trans-series and alien calculus, arXiv:1411.3585 [INSPIRE].
  34. [34]
    M. Mariño, Nonperturbative effects and nonperturbative definitions in matrix models and topological strings, JHEP 12 (2008) 114 [arXiv:0805.3033] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    I. Aniceto, R. Schiappa and M. Vonk, The resurgence of instantons in string theory, Commun. Num. Theor. Phys. 6 (2012) 339 [arXiv:1106.5922] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    Y. Hatsuda, M. Mariño, S. Moriyama and K. Okuyama, Non-perturbative effects and the refined topological string, JHEP 09 (2014) 168 [arXiv:1306.1734] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  37. [37]
    S.M. Nishigaki and F. Sugino, Tracy-Widom distribution as instanton sum of 2D IIA superstrings, JHEP 09 (2014) 104 [arXiv:1405.1633] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    S. Codesido, A. Grassi and M. Mariño, Exact results in \( \mathcal{N}=8 \) Chern-Simons-matter theories and quantum geometry, JHEP 07 (2015) 011 [arXiv:1409.1799] [INSPIRE].
  39. [39]
    J.G. Russo, G.A. Silva and M. Tierz, Supersymmetric U(N) Chern-Simons-Matter theory and phase transitions, Commun. Math. Phys. 338 (2015) 1411 [arXiv:1407.4794] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  40. [40]
    A. Grassi, Y. Hatsuda and M. Mariño, Topological strings from quantum mechanics, Annales Henri Poincaré 17 (2016) 3177 [arXiv:1410.3382] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  41. [41]
    I. Aniceto, J.G. Russo and R. Schiappa, Resurgent analysis of localizable observables in supersymmetric gauge theories, JHEP 03 (2015) 172 [arXiv:1410.5834] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  42. [42]
    R. Couso-Santamaría, R. Schiappa and R. Vaz, Finite N from resurgent large-N, Annals Phys. 356 (2015) 1 [arXiv:1501.01007] [INSPIRE].
  43. [43]
    G. Basar and G.V. Dunne, Resurgence and the Nekrasov-Shatashvili limit: connecting weak and strong coupling in the Mathieu and Lamé systems, JHEP 02 (2015) 160 [arXiv:1501.05671] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    Y. Hatsuda and K. Okuyama, Resummations and non-perturbative corrections, JHEP 09 (2015) 051 [arXiv:1505.07460] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  45. [45]
    G.V. Dunne and M. Ünsal, WKB and resurgence in the Mathieu equation, to be published by Scuola Normale Superiore, Pisa, arXiv:1603.04924 [INSPIRE].
  46. [46]
    M. Honda, Borel summability of perturbative series in 4D N = 2 and 5D N = 1 supersymmetric theories, Phys. Rev. Lett. 116 (2016) 211601 [arXiv:1603.06207] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    M. Honda, How to resum perturbative series in 3d N = 2 Chern-Simons matter theories, Phys. Rev. D 94 (2016) 025039 [arXiv:1604.08653] [INSPIRE].
  48. [48]
    S. Gukov, M. Mariño and P. Putrov, Resurgence in complex Chern-Simons theory, arXiv:1605.07615 [INSPIRE].
  49. [49]
    R. Couso-Santamaría, R. Schiappa and R. Vaz, On asymptotics and resurgent structures of enumerative Gromov-Witten invariants, arXiv:1605.07473 [INSPIRE].
  50. [50]
    P.V. Buividovich, G.V. Dunne and S.N. Valgushev, Complex path integrals and saddles in two-dimensional gauge theory, Phys. Rev. Lett. 116 (2016) 132001 [arXiv:1512.09021] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  51. [51]
    G. Álvarez, L. Martínez Alonso and E. Medina, Complex saddles in the Gross-Witten-Wadia matrix model, Phys. Rev. D 94 (2016) 105010 [arXiv:1610.09948] [INSPIRE].ADSMathSciNetGoogle Scholar
  52. [52]
    K. Okuyama, Wilson loops in unitary matrix models at finite N, JHEP 07 (2017) 030 [arXiv:1705.06542] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  53. [53]
    E. Alfinito and M. Beccaria, Large-N expansion of Wilson loops in the Gross-Witten-Wadia matrix model, arXiv:1707.09625 [INSPIRE].
  54. [54]
    J.C. Le Guillou and J. Zinn-Justin, Large order behavior of perturbation theory, North-Holland, The Netherlands (1990).Google Scholar
  55. [55]
    I. Bars and F. Green, Complete integration of U (N ) lattice gauge theory in a large-N limit, Phys. Rev. D 20 (1979) 3311 [INSPIRE].ADSGoogle Scholar
  56. [56]
    A. Borodin, Discrete gap probabilities and discrete Painlevé equations, Duke Math. J. 117 (2003) 489 [math-ph/0111008].
  57. [57]
    P. Rossi, On the exact evaluation of < detU (p) > in a lattice gauge model, Phys. Lett. B 117 (1982) 72.Google Scholar
  58. [58]
    F. Green and S. Samuel, Chiral models: their implication for gauge theories and large-N, Nucl. Phys. B 190 (1981) 113 [INSPIRE].
  59. [59]
    Asymptotic expansions for large argument: Hankel’s Expansions — NIST DLMF entry,
  60. [60]
    M.V. Berry and C.J. Howls, Hyperasymptotics for integrals with saddles, Proc. Roy. Soc. A 434 (1991) 657.Google Scholar
  61. [61]
    M. Ünsal, Theta dependence, sign problems and topological interference, Phys. Rev. D 86 (2012) 105012 [arXiv:1201.6426] [INSPIRE].
  62. [62]
    G.V. Dunne and M. Ünsal, Deconstructing zero: resurgence, supersymmetry and complex saddles, JHEP 12 (2016) 002 [arXiv:1609.05770] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  63. [63]
    Barnes Gamma function — NIST DLMF entry,
  64. [64]
    Series expansions of modified Bessel functions — NIST DLMF entry,
  65. [65]
    N.A. Nekrasov and S.L. Shatashvili, Quantization of integrable systems and four dimensional gauge theories, in Proceedings of 16th International Congress on Mathematical Physics, P. Exner ed., World Scientific, Singapore (2010), arXiv:0908.4052 [INSPIRE].
  66. [66]
    A. Mironov and A. Morozov, Nekrasov functions and exact Bohr-Zommerfeld integrals, JHEP 04 (2010) 040 [arXiv:0910.5670] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  67. [67]
    A.-K. Kashani-Poor and J. Troost, The toroidal block and the genus expansion, JHEP 03 (2013) 133 [arXiv:1212.0722] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  68. [68]
    A.-K. Kashani-Poor and J. Troost, Pure \( \mathcal{N}=2 \) super Yang-Mills and exact WKB, JHEP 08 (2015) 160 [arXiv:1504.08324] [INSPIRE].
  69. [69]
    D. Krefl, Non-perturbative quantum geometry, JHEP 02 (2014) 084 [arXiv:1311.0584] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  70. [70]
    D. Krefl, Non-perturbative quantum geometry II, JHEP 12 (2014) 118 [arXiv:1410.7116] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  71. [71]
    D. Krefl, Non-perturbative quantum geometry III, JHEP 08 (2016) 020 [arXiv:1605.00182] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  72. [72]
    J. Zinn-Justin and U.D. Jentschura, Multi-instantons and exact results I: conjectures, WKB expansions and instanton interactions, Annals Phys. 313 (2004) 197 [quant-ph/0501136] [INSPIRE].
  73. [73]
    J. Zinn-Justin and U.D. Jentschura, Multi-instantons and exact results II: specific cases, higher-order effects and numerical calculations, Annals Phys. 313 (2004) 269 [quant-ph/0501137] [INSPIRE].
  74. [74]
    U.D. Jentschura and J. Zinn-Justin, Instantons in quantum mechanics and resurgent expansions, Phys. Lett. B 596 (2004) 138 [hep-ph/0405279] [INSPIRE].
  75. [75]
    G. Álvarez, Langer-Cherry derivation of the multi-instanton expansion for the symmetric double well, J. Math. Phys. 45 (2004) 3095.ADSMathSciNetCrossRefMATHGoogle Scholar
  76. [76]
    G.V. Dunne and M. Ünsal, Generating nonperturbative physics from perturbation theory, Phys. Rev. D 89 (2014) 041701 [arXiv:1306.4405] [INSPIRE].
  77. [77]
    G.V. Dunne and M. Ünsal, Uniform WKB, multi-instantons and resurgent trans-series, Phys. Rev. D 89 (2014) 105009 [arXiv:1401.5202] [INSPIRE].ADSGoogle Scholar
  78. [78]
    M. Hisakado, Unitary matrix models and Painlevé III, Mod. Phys. Lett. A 11 (1996) 3001 [hep-th/9609214] [INSPIRE].
  79. [79]
    M. Hisakado, Unitary matrix models and phase transition, Phys. Lett. B 416 (1998) 179 [hep-th/9705121] [INSPIRE].
  80. [80]
    P.J. Forrester and N.S. Witte, Application of the tau-function theory of Painlevé equations to random matrices: PV, PIII, the LUE, JUE, and CUE, Commun. Pure Appl. Math. 55 (2002) 0679.CrossRefGoogle Scholar
  81. [81]
    M. Mariño, R. Schiappa and M. Weiss, Nonperturbative effects and the large-order behavior of matrix models and topological strings, Commun. Num. Theor. Phys. 2 (2008) 349 [arXiv:0711.1954] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  82. [82]
    K. Okamoto, Studies on the Painlevé equations IV: Third Painlevé equation PIII, Funkc. Ekvacioj 30 (1987) 305.MATHGoogle Scholar
  83. [83]
    Y. Ohyama, H. Kawamuko, H. Sakai and K. Okamoto, Studies on the Painlevé equations V: third Painlevé equations of special type PIII (D7) and PIII (D8), J. Math. Sci. Univ. Tokyo 13 (2006) 204.Google Scholar
  84. [84]
    Painlevé equations — NIST DMLF entry,
  85. [85]
    Coalescence cascades — NIST DMLF entry,
  86. [86]
    R. Rosales, The similarity solution for the Korteweg-de Vries equation and the related Painlevé transcendant, Proc. Roy. Soc. Lond. A 361 (1978) 265.Google Scholar
  87. [87]
    S.P. Hastings and J.B. McLeod, A boundary value problem associated with the second Painlevé transcendent and the Korteweg-de Vries equation, Arch. Rat. Mech. Anal. 73 (1980) 31.CrossRefMATHGoogle Scholar
  88. [88]
    H. Neuberger, Complex Burgers’ equation in 2D SU(N) YM, Phys. Lett. B 670 (2008) 235 [arXiv:0809.1238] [INSPIRE].
  89. [89]
    O. Costin, On Borel summation and Stokes phenomena of nonlinear differential systems, Duke Math. J. 93 (1998) 289.MathSciNetCrossRefMATHGoogle Scholar
  90. [90]
    Asymptotic expansions for large order: Debye expansion — NIST DLMF entry,,
  91. [91]
    Uniform large N approximations to Bessel functions — NIST DLMF entry,
  92. [92]
    Second Painlevé Equation with α = 0 — NIST DLMF entry,
  93. [93]
    Asymptotic Expansions for Large Order: transition region — NIST DLMF entry,
  94. [94]
    H. Neuberger, Instantons as a bridgehead at N = ∞, Phys. Lett. B 94 (1980) 199.Google Scholar
  95. [95]
    M. Prähofer and H. Spohn, Exact scaling functions for one-dimensional stationary KPZ growth, J. Stat. Phys. 115 (2004) 255 [cond-mat/0212519].
  96. [96]
    B. Fornberg and J.A.C. Weideman, A computational exploration of the second Painlevé equation, Found. Comput. Math. 14 (2014) 985.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of ConnecticutStorrsU.S.A.

Personalised recommendations