Journal of High Energy Physics

, 2017:51 | Cite as

Electroweak baryogenesis in the \( {\mathbb{Z}}_3 \)-invariant NMSSM

  • Sujeet Akula
  • Csaba Balázs
  • Liam Dunn
  • Graham White
Open Access
Regular Article - Theoretical Physics


We calculate the baryon asymmetry of the Universe in the \( {\mathbb{Z}}_3 \)-invariant Next-to-Minimal Supersymmetric Standard Model where the interactions of the singlino provide the necessary source of charge and parity violation. Using the closed time path formalism, we derive and solve transport equations for the cases where the singlet acquires a vacuum expectation value (VEV) before and during the electroweak phase transition. We perform a detailed scan to show how the baryon asymmetry varies throughout the relevant parameter space. Our results show that the case where the singlet acquires a VEV during the electroweak phase transition typically generates a larger baryon asymmetry, although we expect that the case where the singlet acquires a VEV first is far more common for any model in which parameters unify at a high scale. Finally, we examine the dependence of the baryon asymmetry on the three-body interactions involving gauge singlets.


Supersymmetry Phenomenology 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    R. Cooke, M. Pettini, R.A. Jorgenson, M.T. Murphy and C.C. Steidel, Precision measures of the primordial abundance of deuterium, Astrophys. J. 781 (2014) 31 [arXiv:1308.3240] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  3. [3]
    D.E. Morrissey and M.J. Ramsey-Musolf, Electroweak baryogenesis, New J. Phys. 14 (2012) 125003 [arXiv:1206.2942] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    J.M. Cline, Baryogenesis, in the proceedings of the Les Houches Summer School — Session 86: Particle Physics and Cosmology: The Fabric of Spacetime, July 31-August 25, Les Houches, France (2006), hep-ph/0609145 [INSPIRE].
  5. [5]
    A. Riotto and M. Trodden, Recent progress in baryogenesis, Ann. Rev. Nucl. Part. Sci. 49 (1999) 35 [hep-ph/9901362] [INSPIRE].
  6. [6]
    T. Alanne, K. Kainulainen, K. Tuominen and V. Vaskonen, Baryogenesis in the two doublet and inert singlet extension of the Standard Model, JCAP 08 (2016) 057 [arXiv:1607.03303] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    A.J. Long, A. Tesi and L.-T. Wang, Baryogenesis at a Lepton-Number-Breaking Phase Transition, JHEP 10 (2017) 095 [arXiv:1703.04902] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    G.A. White, A pedagogical introduction to electroweak baryogenesis, Morgan & Claypool Publishers, U.S.A. (2016).CrossRefGoogle Scholar
  9. [9]
    C. Balázs, G. White and J. Yue, Effective field theory, electric dipole moments and electroweak baryogenesis, JHEP 03 (2017) 030 [arXiv:1612.01270] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    P.H. Ghorbani, Electroweak baryogenesis and dark matter via a pseudoscalar vs. scalar, JHEP 08 (2017) 058 [arXiv:1703.06506] [INSPIRE].
  11. [11]
    J.M. Cline, K. Kainulainen and D. Tucker-Smith, Electroweak baryogenesis from a dark sector, Phys. Rev. D 95 (2017) 115006 [arXiv:1702.08909] [INSPIRE].ADSGoogle Scholar
  12. [12]
    A. Beniwal, M. Lewicki, J.D. Wells, M. White and A.G. Williams, Gravitational wave, collider and dark matter signals from a scalar singlet electroweak baryogenesis, JHEP 08 (2017)108 [arXiv:1702.06124] [INSPIRE].
  13. [13]
    A. Haarr, A. Kvellestad and T.C. Petersen, Disfavouring electroweak baryogenesis and a hidden Higgs in a CP-violating two-Higgs-doublet model, arXiv:1611.05757 [INSPIRE].
  14. [14]
    V. Vaskonen, Electroweak baryogenesis and gravitational waves from a real scalar singlet, Phys. Rev. D 95 (2017) 123515 [arXiv:1611.02073] [INSPIRE].ADSGoogle Scholar
  15. [15]
    ATLAS and CMS collaborations, Combined measurement of the Higgs boson mass in pp collisions at \( \sqrt{s}=7 \) and 8 TeV with the ATLAS and CMS experiments, Phys. Rev. Lett. 114 (2015) 191803 [arXiv:1503.07589] [INSPIRE].
  16. [16]
    J.M. Cline and G.D. Moore, Supersymmetric electroweak phase transition: baryogenesis versus experimental constraints, Phys. Rev. Lett. 81 (1998) 3315 [hep-ph/9806354] [INSPIRE].
  17. [17]
    P. Huang, A.J. Long and L.-T. Wang, Probing the electroweak phase transition with Higgs factories and gravitational waves, Phys. Rev. D 94 (2016) 075008 [arXiv:1608.06619] [INSPIRE].ADSGoogle Scholar
  18. [18]
    S. Liebler, S. Profumo and T. Stefaniak, Light stop mass limits from Higgs rate measurements in the MSSM: is MSSM electroweak baryogenesis still alive after all?, JHEP 04 (2016) 143 [arXiv:1512.09172] [INSPIRE].ADSGoogle Scholar
  19. [19]
    M. Laine, G. Nardini and K. Rummukainen, Lattice study of an electroweak phase transition at m h ∼ 126 GeV, JCAP 01 (2013) 011 [arXiv:1211.7344] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    D. Francescone, S. Akula, B. Altunkaynak and P. Nath, Sparticle mass hierarchies, simplified models from SUGRA unification and benchmarks for LHC Run-II SUSY searches, JHEP 01 (2015) 158 [arXiv:1410.4999] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    S. Akula et al., Interpreting the first CMS and ATLAS SUSY results, Phys. Lett. B 699 (2011) 377 [arXiv:1103.1197] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    B. Kaufman, P. Nath, B.D. Nelson and A.B. Spisak, Light stops and observation of supersymmetry at LHC RUN-II, Phys. Rev. D 92 (2015) 095021 [arXiv:1509.02530] [INSPIRE].ADSGoogle Scholar
  23. [23]
    P. Nath, Supersymmetry after the Higgs, Annalen Phys. 528 (2016) 167 [arXiv:1501.01679] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    A. Aboubrahim, T. Ibrahim and P. Nath, Leptonic g − 2 moments, CP phases and the Higgs boson mass constraint, Phys. Rev. D 94 (2016) 015032 [arXiv:1606.08336] [INSPIRE].ADSGoogle Scholar
  25. [25]
    T. Ibrahim, P. Nath and A. Zorik, Higgs boson mass constraint and the CP even- CP odd Higgs boson mixing in an MSSM extension, Phys. Rev. D 94 (2016) 035029 [arXiv:1606.05799] [INSPIRE].ADSGoogle Scholar
  26. [26]
    J. Berger et al., CP -violating phenomenological MSSM, Phys. Rev. D 93 (2016) 035017 [arXiv:1510.08840] [INSPIRE].ADSGoogle Scholar
  27. [27]
    A. Fowlie, The little-hierarchy problem is a little problem: understanding the difference between the big- and little-hierarchy problems with Bayesian probability, arXiv:1506.03786 [INSPIRE].
  28. [28]
    K.-i. Okumura, TeV scale mirage mediation in NMSSM and precision Higgs measurement, in the proceedings of the International Workshop on Future Linear Colliders (LCWS15), November 2-6, Whistler, Canada (2015), arXiv:1603.04205 [INSPIRE].
  29. [29]
    D. Kim, P. Athron, C. Balázs, B. Farmer and E. Hutchison, Bayesian naturalness of the CMSSM and CNMSSM, Phys. Rev. D 90 (2014) 055008 [arXiv:1312.4150] [INSPIRE].ADSGoogle Scholar
  30. [30]
    B. Farmer, C. Balázs, A. Buckley, M. White and D. Carter, Should we still believe in constrained supersymmetry?, PoS(ICHEP2012)102.
  31. [31]
    C. Balázs, A. Buckley, D. Carter, B. Farmer and M. White, Should we still believe in constrained supersymmetry?, Eur. Phys. J. C 73 (2013) 2563 [arXiv:1205.1568] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    S. Akula, M. Liu, P. Nath and G. Peim, Naturalness, supersymmetry and implications for LHC and dark matter, Phys. Lett. B 709 (2012) 192 [arXiv:1111.4589] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    S. Akula, P. Nath and G. Peim, Implications of the Higgs boson discovery for mSUGRA, Phys. Lett. B 717 (2012) 188 [arXiv:1207.1839] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    S. Akula, B. Altunkaynak, D. Feldman, P. Nath and G. Peim, Higgs boson mass predictions in SUGRA unification, recent LHC-7 results and dark matter, Phys. Rev. D 85 (2012) 075001 [arXiv:1112.3645] [INSPIRE].ADSGoogle Scholar
  35. [35]
    U. Ellwanger, C. Hugonie and A.M. Teixeira, The next-to-minimal supersymmetric standard model, Phys. Rept. 496 (2010) 1 [arXiv:0910.1785] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    P. Athron, M. Binjonaid and S.F. King, Fine tuning in the constrained exceptional supersymmetric standard model, Phys. Rev. D 87 (2013) 115023 [arXiv:1302.5291] [INSPIRE].ADSGoogle Scholar
  37. [37]
    J. Kozaczuk, S. Profumo, L.S. Haskins and C.L. Wainwright, Cosmological phase transitions and their properties in the NMSSM, JHEP 01 (2015) 144 [arXiv:1407.4134] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    C. Balázs, A. Fowlie, A. Mazumdar and G. White, Gravitational waves at aLIGO and vacuum stability with a scalar singlet extension of the Standard Model, Phys. Rev. D 95 (2017) 043505 [arXiv:1611.01617] [INSPIRE].ADSGoogle Scholar
  39. [39]
    S. Profumo, M.J. Ramsey-Musolf, C.L. Wainwright and P. Winslow, Singlet-catalyzed electroweak phase transitions and precision Higgs boson studies, Phys. Rev. D 91 (2015) 035018 [arXiv:1407.5342] [INSPIRE].ADSGoogle Scholar
  40. [40]
    A. Fowlie, Is the CNMSSM more credible than the CMSSM?, Eur. Phys. J. C 74 (2014) 3105 [arXiv:1407.7534] [INSPIRE].CrossRefGoogle Scholar
  41. [41]
    V. Barger, P. Langacker, M. McCaskey, M.J. Ramsey-Musolf and G. Shaughnessy, LHC Phenomenology of an extended standard model with a real scalar singlet, Phys. Rev. D 77 (2008) 035005 [arXiv:0706.4311] [INSPIRE].ADSGoogle Scholar
  42. [42]
    R. Contino et al., Physics at a 100 TeV pp collider: Higgs and EW symmetry breaking studies, CERN Yellow Report (2017) 255 [arXiv:1606.09408] [INSPIRE].
  43. [43]
    P. Fayet, Supergauge invariant extension of the Higgs mechanism and a model for the electron and its neutrino, Nucl. Phys. B 90 (1975) 104 [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    H.P. Nilles, M. Srednicki and D. Wyler, Weak interaction breakdown induced by supergravity, Phys. Lett. B 120 (1983) 346 [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    J.M. Frere, D.R.T. Jones and S. Raby, Fermion masses and induction of the weak scale by supergravity, Nucl. Phys. B 222 (1983) 11 [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    J.P. Derendinger and C.A. Savoy, Quantum effects and SU(2) × U(1) breaking in supergravity gauge theories, Nucl. Phys. B 237 (1984) 307 [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    B.R. Greene and P.J. Miron, Supersymmetric cosmology with a gauge singlet, Phys. Lett. 168B (1986) 226 [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    J.R. Ellis et al., Problems for (2, 0) compactifications, Phys. Lett. B 176 (1986) 403 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    L. Durand and J.L. Lopez, Upper bounds on Higgs and top quark masses in the flipped SU(5) × U(1) superstring model, Phys. Lett. B 217 (1989) 463 [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    M. Drees, Supersymmetric models with extended Higgs sector, Int. J. Mod. Phys. A 4 (1989) 3635.ADSCrossRefGoogle Scholar
  51. [51]
    J.R. Ellis, J.F. Gunion, H.E. Haber, L. Roszkowski and F. Zwirner, Higgs bosons in a nonminimal supersymmetric model, Phys. Rev. D 39 (1989) 844 [INSPIRE].ADSGoogle Scholar
  52. [52]
    P.N. Pandita, Radiative corrections to the scalar Higgs masses in a nonminimal supersymmetric Standard Model, Z. Phys. C 59 (1993) 575 [INSPIRE].ADSGoogle Scholar
  53. [53]
    P.N. Pandita, One loop radiative corrections to the lightest Higgs scalar mass in nonminimal supersymmetric Standard Model, Phys. Lett. B 318 (1993) 338 [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    U. Ellwanger, M. Rausch de Traubenberg and C.A. Savoy, Particle spectrum in supersymmetric models with a gauge singlet, Phys. Lett. B 315 (1993) 331 [hep-ph/9307322] [INSPIRE].
  55. [55]
    S.F. King and P.L. White, Resolving the constrained minimal and next-to-minimal supersymmetric standard models, Phys. Rev. D 52 (1995) 4183 [hep-ph/9505326] [INSPIRE].
  56. [56]
    P. Athron, S.F. King, D.J. Miller, S. Moretti and R. Nevzorov, Electroweak symmetry breaking in the E 6 SSM, J. Phys. Conf. Ser. 110 (2008) 072001 [arXiv:0708.3248] [INSPIRE].CrossRefGoogle Scholar
  57. [57]
    T.-j. Li, String inspired singlet extensions of the minimal supersymmetric standard model, Phys. Lett. B 653 (2007) 338 [hep-ph/0612359] [INSPIRE].
  58. [58]
    A.T. Davies, C.D. Froggatt and R.G. Moorhouse, Electroweak baryogenesis in the next-to-minimal supersymmetric model, Phys. Lett. B 372 (1996) 88 [hep-ph/9603388] [INSPIRE].
  59. [59]
    S. Profumo, M.J. Ramsey-Musolf and G. Shaughnessy, Singlet Higgs phenomenology and the electroweak phase transition, JHEP 08 (2007) 010 [arXiv:0705.2425] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    D.J.H. Chung, A.J. Long and L.-T. Wang, 125 GeV Higgs boson and electroweak phase transition model classes, Phys. Rev. D 87 (2013) 023509 [arXiv:1209.1819] [INSPIRE].ADSGoogle Scholar
  61. [61]
    S.V. Demidov, D.S. Gorbunov and D.V. Kirpichnikov, Split NMSSM with electroweak baryogenesis, JHEP 11 (2016) 148 [Erratum ibid. 08 (2017) 080] [arXiv:1608.01985] [INSPIRE].
  62. [62]
    A. Menon, D.E. Morrissey and C.E.M. Wagner, Electroweak baryogenesis and dark matter in the NMSSM, Phys. Rev. D 70 (2004) 035005 [hep-ph/0404184] [INSPIRE].
  63. [63]
    C. Balázs, M. Carena, A. Freitas and C.E.M. Wagner, Phenomenology of the NMSSM from colliders to cosmology, JHEP 06 (2007) 066 [arXiv:0705.0431] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    P. Kumar and E. Ponton, Electroweak baryogenesis and dark matter with an approximate R-symmetry, JHEP 11 (2011) 037 [arXiv:1107.1719] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    M. Carena, N.R. Shah and C.E.M. Wagner, Light dark matter and the electroweak phase transition in the NMSSM, Phys. Rev. D 85 (2012) 036003 [arXiv:1110.4378] [INSPIRE].ADSGoogle Scholar
  66. [66]
    J. Kozaczuk, S. Profumo and C.L. Wainwright, Electroweak baryogenesis and the Fermi gamma-ray line, Phys. Rev. D 87 (2013) 075011 [arXiv:1302.4781] [INSPIRE].ADSGoogle Scholar
  67. [67]
    X.-J. Bi, L. Bian, W. Huang, J. Shu and P.-F. Yin, Interpretation of the Galactic Center excess and electroweak phase transition in the NMSSM, Phys. Rev. D 92 (2015) 023507 [arXiv:1503.03749] [INSPIRE].ADSGoogle Scholar
  68. [68]
    C. Balázs, A. Mazumdar, E. Pukartas and G. White, Baryogenesis, dark matter and inflation in the next-to-minimal supersymmetric standard model, JHEP 01 (2014) 073 [arXiv:1309.5091] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    S.J. Huber and T. Konstandin, Production of gravitational waves in the NMSSM, JCAP 05 (2008) 017 [arXiv:0709.2091] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    P.S.B. Dev and A. Mazumdar, Probing the scale of new physics by advanced LIGO/VIRGO, Phys. Rev. D 93 (2016) 104001 [arXiv:1602.04203] [INSPIRE].ADSGoogle Scholar
  71. [71]
    K. Kainulainen, T. Prokopec, M.G. Schmidt and S. Weinstock, Semiclassical force for electroweak baryogenesis: Three-dimensional derivation, Phys. Rev. D 66 (2002) 043502 [hep-ph/0202177] [INSPIRE].
  72. [72]
    K. Kainulainen, T. Prokopec, M.G. Schmidt and S. Weinstock, First principle derivation of semiclassical force for electroweak baryogenesis, JHEP 06 (2001) 031 [hep-ph/0105295] [INSPIRE].
  73. [73]
    S.J. Huber, T. Konstandin, T. Prokopec and M.G. Schmidt, Electroweak phase transition and baryogenesis in the NMSSM, Nucl. Phys. B 757 (2006) 172 [hep-ph/0606298] [INSPIRE].
  74. [74]
    V. Cirigliano, C. Lee, M.J. Ramsey-Musolf and S. Tulin, Flavored quantum Boltzmann equations, Phys. Rev. D 81 (2010) 103503 [arXiv:0912.3523] [INSPIRE].ADSGoogle Scholar
  75. [75]
    V. Cirigliano, C. Lee and S. Tulin, Resonant flavor oscillations in electroweak baryogenesis, Phys. Rev. D 84 (2011) 056006 [arXiv:1106.0747] [INSPIRE].ADSGoogle Scholar
  76. [76]
    C. Lee, V. Cirigliano and M.J. Ramsey-Musolf, Resonant relaxation in electroweak baryogenesis, Phys. Rev. D 71 (2005) 075010 [hep-ph/0412354] [INSPIRE].
  77. [77]
    K. Cheung, T.-J. Hou, J.S. Lee and E. Senaha, Singlino-driven electroweak baryogenesis in the next-to-MSSM, Phys. Lett. B 710 (2012) 188 [arXiv:1201.3781] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    L. Bian, H.-K. Guo and J. Shu, Gravitational waves, baryon asymmetry of the universe and electric dipole moment in the CP-violating NMSSM, arXiv:1704.02488 [INSPIRE].
  79. [79]
    J.S. Schwinger, Brownian motion of a quantum oscillator, J. Math. Phys. 2 (1961) 407 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  80. [80]
    K.T. Mahanthappa, Multiple production of photons in quantum electrodynamics, Phys. Rev. 126 (1962) 329 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  81. [81]
    P.M. Bakshi and K.T. Mahanthappa, Expectation value formalism in quantum field theory. 2., J. Math. Phys. 4 (1963) 12 [INSPIRE].
  82. [82]
    L.V. Keldysh, Diagram technique for nonequilibrium processes, Zh. Eksp. Teor. Fiz. 47 (1964) 1515 [INSPIRE].MathSciNetGoogle Scholar
  83. [83]
    R.A. Craig, Perturbation expansion for real-time green’s functions, J. Math. Phys. 9 (1968) 605.ADSCrossRefGoogle Scholar
  84. [84]
    K.-c. Chou, Z.-b. Su, B.-l. Hao and L. Yu, Equilibrium and nonequilibrium formalisms made unified, Phys. Rept. 118 (1985) 1 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  85. [85]
    V. Cirigliano, M.J. Ramsey-Musolf, S. Tulin and C. Lee, Yukawa and tri-scalar processes in electroweak baryogenesis, Phys. Rev. D 73 (2006) 115009 [hep-ph/0603058] [INSPIRE].
  86. [86]
    G.A. White, General analytic methods for solving coupled transport equations: from cosmology to beyond, Phys. Rev. D 93 (2016) 043504 [arXiv:1510.03901] [INSPIRE].ADSMathSciNetGoogle Scholar
  87. [87]
    S. Akula, C. Balázs and G.A. White, Semi-analytic techniques for calculating bubble wall profiles, Eur. Phys. J. C 76 (2016) 681 [arXiv:1608.00008] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    M. Maniatis, The Next-to-Minimal Supersymmetric extension of the Standard Model reviewed, Int. J. Mod. Phys. A 25 (2010) 3505 [arXiv:0906.0777] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  89. [89]
    C. Balázs and D. Carter, Likelihood analysis of the next-to-minimal supergravity motivated model, JHEP 03 (2010) 016 [arXiv:0906.5012] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  90. [90]
    K. Cheung, T.-J. Hou, J.S. Lee and E. Senaha, The Higgs boson sector of the next-to-MSSM with CP-violation, Phys. Rev. D 82 (2010) 075007 [arXiv:1006.1458] [INSPIRE].ADSGoogle Scholar
  91. [91]
    K. Cheung, T.-J. Hou, J.S. Lee and E. Senaha, Higgs mediated EDMs in the next-to-MSSM: an application to electroweak baryogenesis, Phys. Rev. D 84 (2011) 015002 [arXiv:1102.5679] [INSPIRE].ADSGoogle Scholar
  92. [92]
    T. Konstandin, Quantum transport and electroweak baryogenesis, Phys. Usp. 56 (2013) 747 [arXiv:1302.6713].ADSCrossRefGoogle Scholar
  93. [93]
    K. Funakubo and S. Tao, The Higgs sector in the next-to-MSSM, Prog. Theor. Phys. 113 (2005) 821 [hep-ph/0409294] [INSPIRE].
  94. [94]
    P.C. Martin and J.S. Schwinger, Theory of many particle systems. 1., Phys. Rev. 115 (1959) 1342 [INSPIRE].
  95. [95]
    M. Carena, M. Quirós, A. Riotto, I. Vilja and C.E.M. Wagner, Electroweak baryogenesis and low-energy supersymmetry, Nucl. Phys. B 503 (1997) 387 [hep-ph/9702409] [INSPIRE].
  96. [96]
    A. Riotto, The More relaxed supersymmetric electroweak baryogenesis, Phys. Rev. D 58 (1998) 095009 [hep-ph/9803357] [INSPIRE].
  97. [97]
    M. Carena, J.M. Moreno, M. Quirós, M. Seco and C.E.M. Wagner, Supersymmetric CP-violating currents and electroweak baryogenesis, Nucl. Phys. B 599 (2001) 158 [hep-ph/0011055] [INSPIRE].
  98. [98]
    M. Carena, M. Quirós, M. Seco and C.E.M. Wagner, Improved results in supersymmetric electroweak baryogenesis, Nucl. Phys. B 650 (2003) 24 [hep-ph/0208043] [INSPIRE].
  99. [99]
    T. Konstandin, T. Prokopec, M.G. Schmidt and M. Seco, MSSM electroweak baryogenesis and flavor mixing in transport equations, Nucl. Phys. B 738 (2006) 1 [hep-ph/0505103] [INSPIRE].
  100. [100]
    D.J.H. Chung, B. Garbrecht, M.J. Ramsey-Musolf and S. Tulin, Lepton-mediated electroweak baryogenesis, Phys. Rev. D 81 (2010) 063506 [arXiv:0905.4509] [INSPIRE].ADSGoogle Scholar
  101. [101]
    D.J.H. Chung, B. Garbrecht, M. Ramsey-Musolf and S. Tulin, Supergauge interactions and electroweak baryogenesis, JHEP 12 (2009) 067 [arXiv:0908.2187] [INSPIRE].ADSCrossRefGoogle Scholar
  102. [102]
    T. Konstandin, T. Prokopec and M.G. Schmidt, Kinetic description of fermion flavor mixing and CP-violating sources for baryogenesis, Nucl. Phys. B 716 (2005) 373 [hep-ph/0410135] [INSPIRE].
  103. [103]
    H.A. Kramers, Brownian motion in a field of force and the diffusion model of chemical re actions, Physica 7 (1940) 284 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  104. [104]
    G.D. Moore, Sphaleron rate in the symmetric electroweak phase, Phys. Rev. D 62 (2000) 085011 [hep-ph/0001216] [INSPIRE].
  105. [105]
    P. Elmfors, K. Enqvist, A. Riotto and I. Vilja, Damping rates in the MSSM and electroweak baryogenesis, Phys. Lett. B 452 (1999) 279 [hep-ph/9809529] [INSPIRE].
  106. [106]
    M. Joyce, T. Prokopec and N. Turok, Nonlocal electroweak baryogenesis. Part 1: thin wall regime, Phys. Rev. D 53 (1996) 2930 [hep-ph/9410281] [INSPIRE].
  107. [107]
    J.M. Cline, M. Joyce and K. Kainulainen, Supersymmetric electroweak baryogenesis, JHEP 07 (2000) 018 [hep-ph/0006119] [INSPIRE].
  108. [108]
    D. Bödeker, G.D. Moore and K. Rummukainen, Chern-Simons number diffusion and hard thermal loops on the lattice, Phys. Rev. D 61 (2000) 056003 [hep-ph/9907545] [INSPIRE].
  109. [109]
    G.D. Moore and K. Rummukainen, Classical sphaleron rate on fine lattices, Phys. Rev. D 61 (2000) 105008 [hep-ph/9906259] [INSPIRE].
  110. [110]
    F. Feroz, M. P. Hobson and M. Bridges, MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics, Mon. Not. Roy. Astron. Soc. 398 (2009) 1601 [arXiv:0809.3437].ADSCrossRefGoogle Scholar
  111. [111]
    F. Feroz and M. P. Hobson, Multimodal nested sampling: an efficient and robust alternative to MCMC methods for astronomical data analysis, Mon. Not. Roy. Astron. Soc. 384 (2008) 449 [arXiv:0704.3704].ADSCrossRefGoogle Scholar
  112. [112]
    F. Feroz, M.P. Hobson, E. Cameron and A.N. Pettitt, Importance nested sampling and the MultiNest algorithm, arXiv:1306.2144 [INSPIRE].
  113. [113]
    B.C. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra, Comput. Phys. Commun. 143 (2002) 305 [hep-ph/0104145] [INSPIRE].
  114. [114]
    B.C. Allanach, P. Athron, L.C. Tunstall, A. Voigt and A.G. Williams, Next-to-minimal SOFTSUSY, Comput. Phys. Commun. 185 (2014) 2322 [arXiv:1311.7659] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Sujeet Akula
    • 1
    • 3
  • Csaba Balázs
    • 1
    • 2
    • 3
    • 4
  • Liam Dunn
    • 1
    • 5
  • Graham White
    • 1
    • 2
    • 3
  1. 1.School of Physics and AstronomyMonash UniversityVictoriaAustralia
  2. 2.Monash Centre for AstrophysicsMonash UniversityVictoriaAustralia
  3. 3.ARC Centre of Excellence for Particle Physics at the TerascaleMonash UniversityVictoriaAustralia
  4. 4.Australian Collaboration for Accelerator ScienceMonash UniversityVictoriaAustralia
  5. 5.School of PhysicsThe University of MelbourneMelbourneAustralia

Personalised recommendations