Advertisement

Journal of High Energy Physics

, 2017:48 | Cite as

Chaos, complexity, and random matrices

  • Jordan Cotler
  • Nicholas Hunter-JonesEmail author
  • Junyu Liu
  • Beni Yoshida
Open Access
Regular Article - Theoretical Physics

Abstract

Chaos and complexity entail an entropic and computational obstruction to describing a system, and thus are intrinsically difficult to characterize. In this paper, we consider time evolution by Gaussian Unitary Ensemble (GUE) Hamiltonians and analytically compute out-of-time-ordered correlation functions (OTOCs) and frame potentials to quantify scrambling, Haar-randomness, and circuit complexity. While our random matrix analysis gives a qualitatively correct prediction of the late-time behavior of chaotic systems, we find unphysical behavior at early times including an \( \mathcal{O}(1) \) scrambling time and the apparent breakdown of spatial and temporal locality. The salient feature of GUE Hamiltonians which gives us computational traction is the Haar-invariance of the ensemble, meaning that the ensemble-averaged dynamics look the same in any basis. Motivated by this property of the GUE, we introduce k-invariance as a precise definition of what it means for the dynamics of a quantum system to be described by random matrix theory. We envision that the dynamical onset of approximate k-invariance will be a useful tool for capturing the transition from early-time chaos, as seen by OTOCs, to late-time chaos, as seen by random matrix theory.

Keywords

AdS-CFT Correspondence Black Holes Matrix Models Random Systems 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    P. Hayden and J. Preskill, Black holes as mirrors: Quantum information in random subsystems, JHEP 09 (2007) 120 [arXiv:0708.4025] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    Y. Sekino and L. Susskind, Fast Scramblers, JHEP 10 (2008) 065 [arXiv:0808.2096] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    N. Lashkari, D. Stanford, M. Hastings, T. Osborne and P. Hayden, Towards the Fast Scrambling Conjecture, JHEP 04 (2013) 022 [arXiv:1111.6580] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    S.H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP 03 (2014) 067 [arXiv:1306.0622] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    S.H. Shenker and D. Stanford, Stringy effects in scrambling, JHEP 05 (2015) 132 [arXiv:1412.6087] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP 08 (2016) 106 [arXiv:1503.01409] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    A. Kitaev, Hidden correlations in the hawking radiation and thermal noise, talks given at The Fundamental Physics Prize Symposium, 10 November 2014, and at The KITP, 12 February 2015.Google Scholar
  8. [8]
    S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett. 70 (1993) 3339 [cond-mat/9212030] [INSPIRE].
  9. [9]
    A. Kitaev, A simple model of quantum holography, talks given at The KITP, 7 April 2015 and 27 May 2015.Google Scholar
  10. [10]
    J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 106002 [arXiv:1604.07818] [INSPIRE].ADSMathSciNetGoogle Scholar
  11. [11]
    J.S. Cotler et al., Black Holes and Random Matrices, JHEP 05 (2017) 118 [arXiv:1611.04650] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    E.P. Wigner, Characteristic vectors of bordered matrices with infinite dimensions, Ann. Math. 62 (1955) 548.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    F.J. Dyson, Statistical theory of the energy levels of complex systems. I, J. Math. Phys. 3 (1962) 140 [INSPIRE].
  14. [14]
    O. Bohigas, M.J. Giannoni and C. Schmit, Characterization of chaotic quantum spectra and universality of level fluctuation laws, Phys. Rev. Lett. 52 (1984) 1 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    P. Hosur, X.-L. Qi, D.A. Roberts and B. Yoshida, Chaos in quantum channels, JHEP 02 (2016) 004 [arXiv:1511.04021] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    D.A. Roberts and B. Yoshida, Chaos and complexity by design, JHEP 04 (2017) 121 [arXiv:1610.04903] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    J.M. Maldacena, Eternal black holes in anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    D.A. Roberts and D. Stanford, Two-dimensional conformal field theory and the butterfly effect, Phys. Rev. Lett. 115 (2015) 131603 [arXiv:1412.5123] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    A.L. Fitzpatrick, J. Kaplan, D. Li and J. Wang, On information loss in AdS 3 /CFT 2 , JHEP 05 (2016) 109 [arXiv:1603.08925] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    A.L. Fitzpatrick and J. Kaplan, On the Late-Time Behavior of Virasoro Blocks and a Classification of Semiclassical Saddles, JHEP 04 (2017) 072 [arXiv:1609.07153] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    E. Dyer and G. Gur-Ari, 2D CFT Partition Functions at Late Times, JHEP 08 (2017) 075 [arXiv:1611.04592] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    V. Balasubramanian, B. Craps, B. Czech and G. Sárosi, Echoes of chaos from string theory black holes, JHEP 03 (2017) 154 [arXiv:1612.04334] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    Y.-Z. You, A.W.W. Ludwig and C. Xu, Sachdev-Ye-Kitaev Model and Thermalization on the Boundary of Many-Body Localized Fermionic Symmetry Protected Topological States, Phys. Rev. B 95 (2017) 115150 [arXiv:1602.06964] [INSPIRE].
  24. [24]
    A.M. García-García and J.J.M. Verbaarschot, Spectral and thermodynamic properties of the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 126010 [arXiv:1610.03816] [INSPIRE].ADSGoogle Scholar
  25. [25]
    M. Mehta, Random Matrices, Pure and Applied Mathematics, Elsevier Science (2004).Google Scholar
  26. [26]
    T. Tao, Topics in Random Matrix Theory, Graduate studies in mathematics, American Mathematical Society (2012).Google Scholar
  27. [27]
    T. Guhr, A. Müller-Groeling and H.A. Weidenmuller, Random matrix theories in quantum physics: Common concepts, Phys. Rept. 299 (1998) 189 [cond-mat/9707301] [INSPIRE].
  28. [28]
    A.R. Brown and L. Susskind, The Second Law of Quantum Complexity, arXiv:1701.01107 [INSPIRE].
  29. [29]
    A. del Campo, J. Molina-Vilaplana and J. Sonner, Scrambling the spectral form factor: unitarity constraints and exact results, Phys. Rev. D 95 (2017) 126008 [arXiv:1702.04350] [INSPIRE].
  30. [30]
    E. Brézin and S. Hikami, Spectral form factor in a random matrix theory, Phys. Rev. E 55 (1997) 4067 [cond-mat/9608116].
  31. [31]
    L. Erdős and D. Schröder, Phase Transition in the Density of States of Quantum Spin Glasses, Math. Phys. Anal. Geom. 17 (2014) 9164 [arXiv:1407.1552].MathSciNetzbMATHGoogle Scholar
  32. [32]
    J.S. Cotler, G.R. Penington and D.H. Ranard, Locality from the Spectrum, arXiv:1702.06142 [INSPIRE].
  33. [33]
    A.I. Larkin and Y.N. Ovchinnikov, Quasiclassical Method in the Theory of Superconductivity, JETP 28 (1969) 1200.ADSGoogle Scholar
  34. [34]
    D. Bagrets, A. Altland and A. Kamenev, Power-law out of time order correlation functions in the SYK model, Nucl. Phys. B 921 (2017) 727 [arXiv:1702.08902] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    F.G.S.L. Brandão, P. Ćwiklinski, M. Horodecki, P. Horodecki, J.K. Korbicz and M. Mozrzymas, Convergence to equilibrium under a random hamiltonian, Phys. Rev. E 86 (2012) 031101 [arXiv:1108.2985].
  36. [36]
    S.W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206] [INSPIRE].
  37. [37]
    W.G. Unruh, Notes on black hole evaporation, Phys. Rev. D 14 (1976) 870 [INSPIRE].
  38. [38]
    D.N. Page, Average entropy of a subsystem, Phys. Rev. Lett. 71 (1993) 1291 [gr-qc/9305007] [INSPIRE].
  39. [39]
    Z.-W. Liu, S. Lloyd, E.Y. Zhu and H. Zhu, Entropic scrambling complexities, arXiv:1703.08104 [INSPIRE].
  40. [40]
    C. Dankert, R. Cleve, J. Emerson and E. Livine, Exact and approximate unitary 2-designs and their application to fidelity estimation, Phys. Rev. A 80 (2009) 012304 [quant-ph/0606161].
  41. [41]
    F.G.S.L. Brandão, A.W. Harrow and M. Horodecki, Local Random Quantum Circuits are Approximate Polynomial-Designs, Commun. Math. Phys. 346 (2016) 397 [arXiv:1208.0692].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    F. Pastawski, B. Yoshida, D. Harlow and J. Preskill, Holographic quantum error-correcting codes: Toy models for the bulk/boundary correspondence, JHEP 06 (2015) 149 [arXiv:1503.06237] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    P. Hayden, S. Nezami, X.-L. Qi, N. Thomas, M. Walter and Z. Yang, Holographic duality from random tensor networks, JHEP 11 (2016) 009 [arXiv:1601.01694] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    A.J. Scott, Optimizing quantum process tomography with unitary 2-designs, J. Phys. A 41 (2008) 055308 [arXiv:0711.1017].
  45. [45]
    B. Collins, Moments and cumulants of polynomial random variables on unitarygroups, the itzykson-zuber integral, and free probability, Int. Math. Res. Not. 2003 (2003) 953 [math-ph/0205010].
  46. [46]
    B. Collins and P. Śniady, Integration with Respect to the Haar Measure on Unitary, Orthogonal and Symplectic Group, Commun. Math. Phys. 264 (2006) 773 [math-ph/0402073].
  47. [47]
    D. Weingarten, Asymptotic Behavior of Group Integrals in the Limit of Infinite Rank, J. Math. Phys. 19 (1978) 999 [INSPIRE].
  48. [48]
    P. Diaconis and M. Shahshahani, On the eigenvalues of random matrices, J. Appl. Prob. 31 (1994) 49.MathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    S. Bravyi, M.B. Hastings and F. Verstraete, Lieb-Robinson Bounds and the Generation of Correlations and Topological Quantum Order, Phys. Rev. Lett. 97 (2006) 050401 [quant-ph/0603121].
  50. [50]
    L. Susskind, Computational Complexity and Black Hole Horizons, Fortsch. Phys. 64 (2016) 44 [arXiv:1403.5695] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. [51]
    A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao, Complexity, action and black holes, Phys. Rev. D 93 (2016) 086006 [arXiv:1512.04993] [INSPIRE].
  52. [52]
    X. Chen, Z.C. Gu and X.G. Wen, Local unitary transformation, long-range quantum entanglement, wave function renormalization and topological order, Phys. Rev. B 82 (2010) 155138 [arXiv:1004.3835] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    D. Harlow and P. Hayden, Quantum Computation vs. Firewalls, JHEP 06 (2013) 085 [arXiv:1301.4504] [INSPIRE].
  54. [54]
    Z.-C. Yang, A. Hamma, S.M. Giampaolo, E.R. Mucciolo and C. Chamon, Entanglement complexity in quantum many-body dynamics, thermalization, and localization, Phys. Rev. B 96 (2017) 020408 [arXiv:1703.03420].
  55. [55]
    E. Brézin and S. Hikami, Random Matrix Theory with an External Source, Springer Briefs in Mathematical Physics, Springer Singapore (2017).Google Scholar
  56. [56]
    Y. Huang, F.G. S.L. Brandao and Y.-L. Zhang, Finite-size scaling of out-of-time-ordered correlators at late times, arXiv:1705.07597 [INSPIRE].
  57. [57]
    M.V. Berry, Regular and irregular semiclassical wavefunctions, J. Phys. A 10 (1977) 2083.ADSMathSciNetzbMATHGoogle Scholar
  58. [58]
    M. Srednicki, Chaos and quantum thermalization, Phys. Rev. E 50 (1994) 888 [cond-mat/9403051].
  59. [59]
    L. D’Alessio, Y. Kafri, A. Polkovnikov and M. Rigol, From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics, Adv. Phys. 65 (2016) 239 [arXiv:1509.06411] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    W.W. Ho and D. Radicevic, The Ergodicity Landscape of Quantum Theories, arXiv:1701.08777 [INSPIRE].
  61. [61]
    J. Sonner and M. Vielma, Eigenstate thermalization in the Sachdev-Ye-Kitaev model, arXiv:1707.08013 [INSPIRE].
  62. [62]
    J.M. Magan, Random free fermions: An analytical example of eigenstate thermalization, Phys. Rev. Lett. 116 (2016) 030401 [arXiv:1508.05339] [INSPIRE].
  63. [63]
    H. Gharibyan, M. Hanada, S. Shenker and M. Tezuka, to appear.Google Scholar
  64. [64]
    D.N. Page, Information in black hole radiation, Phys. Rev. Lett. 71 (1993) 3743 [hep-th/9306083] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  65. [65]
    W. Brown and O. Fawzi, Decoupling with random quantum circuits, Commun. Math. Phys. 340 (2015) 867 [arXiv:1307.0632].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  66. [66]
    R.A. Low, Pseudo-randomness and Learning in Quantum Computation, Ph.D. Thesis (2010) [arXiv:1006.5227].
  67. [67]
    E. Brézin and S. Hikami, Extension of level-spacing universality, Phys. Rev. E 56 (1997) 264 [cond-mat/9702213].
  68. [68]
    R.E. Prange, The spectral form factor is not self-averaging, Phys. Rev. Lett. 78 (1997) 2280 [chao-dyn/9606010].

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Stanford Institute for Theoretical PhysicsStanford UniversityStanfordU.S.A.
  2. 2.Institute for Quantum Information and Matter & Walter Burke Institute for Theoretical PhysicsCalifornia Institute of TechnologyPasadenaU.S.A.
  3. 3.Perimeter Institute for Theoretical PhysicsWaterlooCanada

Personalised recommendations