Journal of High Energy Physics

, 2017:44 | Cite as

B-physics anomalies: a guide to combined explanations

  • Dario Buttazzo
  • Admir Greljo
  • Gino Isidori
  • David Marzocca
Open Access
Regular Article - Theoretical Physics

Abstract

Motivated by additional experimental hints of Lepton Flavour Universality violation in B decays, both in charged- and in neutral-current processes, we analyse the ingredients necessary to provide a combined description of these phenomena. By means of an Effective Field Theory (EFT) approach, based on the hypothesis of New Physics coupled predominantly to the third generation of left-handed quarks and leptons, we show how this is possible. We demonstrate, in particular, how to solve the problems posed by electroweak precision tests and direct searches with a rather natural choice of model parameters, within the context of a U(2) q ×U(2) flavour symmetry. We further exemplify the general EFT findings by means of simplified models with explicit mediators in the TeV range: coloured scalar or vector leptoquarks and colour-less vectors. Among these, the case of an SU(2) L -singlet vector leptoquark emerges as a particularly simple and successful framework.

Keywords

Beyond Standard Model Heavy Quark Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    LHCb collaboration, Test of lepton universality with B 0K ∗0 + decays, JHEP 08 (2017) 055 [arXiv:1705.05802] [INSPIRE].
  2. [2]
    A.R. Vidal, Lepton Flavour Universality tests using semitauonic decays at LHCb, CERN EP seminar, 06 June 2017.Google Scholar
  3. [3]
    BaBar collaboration, J.P. Lees et al., Measurement of an Excess of \( \overline{B}\to {D}^{\left(\ast \right)}{\tau}^{-}{\overline{\nu}}_{\tau } \) Decays and Implications for Charged Higgs Bosons, Phys. Rev. D 88 (2013) 072012 [arXiv:1303.0571] [INSPIRE].
  4. [4]
    Belle collaboration, S. Hirose et al., Measurement of the τ lepton polarization and R(D ) in the decay \( \overline{B}\to {D}^{\ast }{\tau}^{-}{\overline{\nu}}_{\tau } \), Phys. Rev. Lett. 118 (2017) 211801 [arXiv:1612.00529] [INSPIRE].
  5. [5]
    LHCb collaboration, Measurement of the ratio of branching fractions \( \mathrm{\mathcal{B}}\left({\overline{B}}^0\to {D}^{\ast +}{\tau}^{-}{\overline{\nu}}_{\tau}\right)/\mathrm{\mathcal{B}}\left({\overline{B}}^0\to {D}^{\ast +}{\mu}^{-}{\overline{\nu}}_{\mu}\right) \), Phys. Rev. Lett. 115 (2015) 111803 [Addendum ibid. 115 (2015) 159901] [arXiv:1506.08614] [INSPIRE].
  6. [6]
    LHCb collaboration, Test of lepton universality using B +K + + decays, Phys. Rev. Lett. 113 (2014) 151601 [arXiv:1406.6482] [INSPIRE].
  7. [7]
    LHCb collaboration, Measurement of Form-Factor-Independent Observables in the Decay B 0K ∗0 μ + μ , Phys. Rev. Lett. 111 (2013) 191801 [arXiv:1308.1707] [INSPIRE].
  8. [8]
    LHCb collaboration, Angular analysis of the B 0K ∗0 μ + μ decay using 3fb −1 of integrated luminosity, JHEP 02 (2016) 104 [arXiv:1512.04442] [INSPIRE].
  9. [9]
    W. Altmannshofer and D.M. Straub, Implications of bs measurements, arXiv:1503.06199 [INSPIRE].
  10. [10]
    S. Descotes-Genon, L. Hofer, J. Matias and J. Virto, Global analysis of bsℓℓ anomalies, JHEP 06 (2016) 092 [arXiv:1510.04239] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    B. Bhattacharya, A. Datta, D. London and S. Shivashankara, Simultaneous Explanation of the R K and R(D (∗)) Puzzles, Phys. Lett. B 742 (2015) 370 [arXiv:1412.7164] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  12. [12]
    R. Alonso, B. Grinstein and J. Martin Camalich, Lepton universality violation and lepton flavor conservation in B-meson decays, JHEP 10 (2015) 184 [arXiv:1505.05164] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    A. Greljo, G. Isidori and D. Marzocca, On the breaking of Lepton Flavor Universality in B decays, JHEP 07 (2015) 142 [arXiv:1506.01705] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    L. Calibbi, A. Crivellin and T. Ota, Effective Field Theory Approach to bsℓℓ (ʹ) , \( B\to {K}^{\left(\ast \right)}\nu \overline{\nu} \) and BD (∗) τν with Third Generation Couplings, Phys. Rev. Lett. 115 (2015) 181801 [arXiv:1506.02661] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    M. Bauer and M. Neubert, Minimal Leptoquark Explanation for the R D(∗) , R K and (g − 2)g Anomalies, Phys. Rev. Lett. 116 (2016) 141802 [arXiv:1511.01900] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    S. Fajfer and N. Košnik, Vector leptoquark resolution of R K and R D(∗) puzzles, Phys. Lett. B 755 (2016) 270 [arXiv:1511.06024] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    R. Barbieri, G. Isidori, A. Pattori and F. Senia, Anomalies in B-decays and U(2) flavour symmetry, Eur. Phys. J. C 76 (2016) 67 [arXiv:1512.01560] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    D. Das, C. Hati, G. Kumar and N. Mahajan, Towards a unified explanation of R D(∗) , R K and (g −2)μ anomalies in a left-right model with leptoquarks, Phys. Rev. D 94 (2016) 055034 [arXiv:1605.06313] [INSPIRE].ADSGoogle Scholar
  19. [19]
    S.M. Boucenna, A. Celis, J. Fuentes-Martin, A. Vicente and J. Virto, Phenomenology of an SU(2) × SU(2) × U(1) model with lepton-flavour non-universality, JHEP 12 (2016) 059 [arXiv:1608.01349] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    D. Bečirević, S. Fajfer, N. Košnik and O. Sumensari, Leptoquark model to explain the B-physics anomalies, R K and R D, Phys. Rev. D 94 (2016) 115021 [arXiv:1608.08501] [INSPIRE].ADSGoogle Scholar
  21. [21]
    G. Hiller, D. Loose and K. Schönwald, Leptoquark Flavor Patterns & B Decay Anomalies, JHEP 12 (2016) 027 [arXiv:1609.08895] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    B. Bhattacharya, A. Datta, J.-P. Guévin, D. London and R. Watanabe, Simultaneous Explanation of the R K and R D(∗) Puzzles: a Model Analysis, JHEP 01 (2017) 015 [arXiv:1609.09078] [INSPIRE].
  23. [23]
    D. Buttazzo, A. Greljo, G. Isidori and D. Marzocca, Toward a coherent solution of diphoton and flavor anomalies, JHEP 08 (2016) 035 [arXiv:1604.03940] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    R. Barbieri, C.W. Murphy and F. Senia, B-decay Anomalies in a Composite Leptoquark Model, Eur. Phys. J. C 77 (2017) 8 [arXiv:1611.04930] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    M. Bordone, G. Isidori and S. Trifinopoulos, Semileptonic B-physics anomalies: A general EFT analysis within U(2)n flavor symmetry, Phys. Rev. D 96 (2017) 015038 [arXiv:1702.07238] [INSPIRE].ADSGoogle Scholar
  26. [26]
    A. Crivellin, D. Müller and T. Ota, Simultaneous explanation of R(D (∗)) and b + μ : the last scalar leptoquarks standing, JHEP 09 (2017) 040 [arXiv:1703.09226] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    D. Bečirević, N. Košnik, O. Sumensari and R. Zukanovich Funchal, Palatable Leptoquark Scenarios for Lepton Flavor Violation in Exclusive bsℓ 1 2 modes, JHEP 11 (2016) 035 [arXiv:1608.07583] [INSPIRE].Google Scholar
  28. [28]
    Y. Cai, J. Gargalionis, M.A. Schmidt and R.R. Volkas, Reconsidering the One Leptoquark solution: flavor anomalies and neutrino mass, JHEP 10 (2017) 047 [arXiv:1704.05849] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    E. Megias, M. Quirós and L. Salas, Lepton-flavor universality violation in R K and R D(∗) from warped space, JHEP 07 (2017) 102 [arXiv:1703.06019] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    S.L. Glashow, D. Guadagnoli and K. Lane, Lepton Flavor Violation in B Decays?, Phys. Rev. Lett. 114 (2015) 091801 [arXiv:1411.0565] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    R. Barbieri, G. Isidori, J. Jones-Perez, P. Lodone and D.M. Straub, U(2) and Minimal Flavour Violation in Supersymmetry, Eur. Phys. J. C 71 (2011) 1725 [arXiv:1105.2296] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    R. Barbieri, D. Buttazzo, F. Sala and D.M. Straub, Flavour physics from an approximate U(2)3 symmetry, JHEP 07 (2012) 181 [arXiv:1203.4218] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    D.A. Faroughy, A. Greljo and J.F. Kamenik, Confronting lepton flavor universality violation in B decays with high-p T tau lepton searches at LHC, Phys. Lett. B 764 (2017) 126 [arXiv:1609.07138] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    F. Feruglio, P. Paradisi and A. Pattori, Revisiting Lepton Flavor Universality in B Decays, Phys. Rev. Lett. 118 (2017) 011801 [arXiv:1606.00524] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    F. Feruglio, P. Paradisi and A. Pattori, On the Importance of Electroweak Corrections for B Anomalies, JHEP 09 (2017) 061 [arXiv:1705.00929] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    B. Capdevila, A. Crivellin, S. Descotes-Genon, J. Matias and J. Virto, Patterns of New Physics in bsℓ + transitions in the light of recent data, arXiv:1704.05340 [INSPIRE].
  37. [37]
    W. Altmannshofer, P. Stangl and D.M. Straub, Interpreting Hints for Lepton Flavor Universality Violation, Phys. Rev. D 96 (2017) 055008 [arXiv:1704.05435] [INSPIRE].ADSGoogle Scholar
  38. [38]
    G. D’Amico et al., Flavour anomalies after the R Kmeasurement, JHEP 09 (2017) 010 [arXiv:1704.05438] [INSPIRE].CrossRefGoogle Scholar
  39. [39]
    M. Ciuchini et al., On Flavourful Easter eggs for New Physics hunger and Lepton Flavour Universality violation, Eur. Phys. J. C 77 (2017) 688 [arXiv:1704.05447] [INSPIRE].CrossRefGoogle Scholar
  40. [40]
    L.-S. Geng, B. Grinstein, S. Jäger, J. Martin Camalich, X.-L. Ren and R.-X. Shi, Towards the discovery of new physics with lepton-universality ratios of bsℓℓ decays, arXiv:1704.05446 [INSPIRE].
  41. [41]
    A. Celis, J. Fuentes-Martin, A. Vicente and J. Virto, Gauge-invariant implications of the LHCb measurements on lepton-flavor nonuniversality, Phys. Rev. D 96 (2017) 035026 [arXiv:1704.05672] [INSPIRE].ADSGoogle Scholar
  42. [42]
    T. Hurth, F. Mahmoudi, D. Martinez Santos and S. Neshatpour, On lepton non-universality in exclusive bsℓℓ decays, arXiv:1705.06274 [INSPIRE].
  43. [43]
    A.J. Buras, J. Girrbach-Noe, C. Niehoff and D.M. Straub, \( B\to {K}^{\left(\ast \right)}\nu \overline{\nu} \) decays in the Standard Model and beyond, JHEP 02 (2015) 184 [arXiv:1409.4557] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  44. [44]
    A. Zupanc, Belle 2 prospects, talk at Instant Workshop on B meson anomalies, CERN (2017), https://indico.cern.ch/event/633880/contributions/2577392/attachments/1462862/ 2260081/BelleII Zupanc.pdf.
  45. [45]
    L. Di Luzio and M. Nardecchia, What is the scale of new physics behind the B-flavour anomalies?, Eur. Phys. J. C 77 (2017) 536 [arXiv:1706.01868] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    I. Doršner, S. Fajfer, A. Greljo, J.F. Kamenik and N. Košnik, Physics of leptoquarks in precision experiments and at particle colliders, Phys. Rept. 641 (2016) 1 [arXiv:1603.04993] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  47. [47]
    A. Belyaev, C. Leroy, R. Mehdiyev and A. Pukhov, Leptoquark single and pair production at LHC with CalcHEP/CompHEP in the complete model, JHEP 09 (2005) 005 [hep-ph/0502067] [INSPIRE].
  48. [48]
    CMS collaboration, Search for pair production of third-generation scalar leptoquarks and top squarks in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Lett. B 739 (2014) 229 [arXiv:1408.0806] [INSPIRE].
  49. [49]
    ATLAS collaboration, Searches for scalar leptoquarks in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 76 (2016) 5 [arXiv:1508.04735] [INSPIRE].
  50. [50]
    CMS collaboration, Search for third-generation scalar leptoquarks and heavy right-handed neutrinos in final states with two tau leptons and two jets in proton-proton collisions at \( \sqrt{s}=13 \) TeV, JHEP 07 (2017) 121 [arXiv:1703.03995] [INSPIRE].
  51. [51]
    ATLAS collaboration, A search for high-mass resonances decaying to τ + τ in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 07 (2015) 157 [arXiv:1502.07177] [INSPIRE].
  52. [52]
    A. Greljo and D. Marzocca, High-p T dilepton tails and flavor physics, Eur. Phys. J. C 77 (2017) 548 [arXiv:1704.09015] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    B. Diaz, M. Schmaltz and Y.-M. Zhong, The leptoquark Hunter’s guide: Pair production, JHEP 10 (2017) 097 [arXiv:1706.05033] [INSPIRE].CrossRefADSGoogle Scholar
  54. [54]
    I. Dorsner, S. Fajfer and A. Greljo, Cornering Scalar Leptoquarks at LHC, JHEP 10 (2014) 154 [arXiv:1406.4831] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    G. Hiller and I. Nisandzic, R K and R Kbeyond the standard model, Phys. Rev. D 96 (2017) 035003 [arXiv:1704.05444] [INSPIRE].ADSGoogle Scholar
  56. [56]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
  57. [57]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244 [arXiv:1207.1303] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    D.B. Kaplan and H. Georgi, SU(2) × U(1) Breaking by Vacuum Misalignment, Phys. Lett. B 136 (1984) 183 [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    H. Georgi and D.B. Kaplan, Composite Higgs and Custodial SU(2), Phys. Lett. B 145 (1984) 216 [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    G. Ferretti and D. Karateev, Fermionic UV completions of Composite Higgs models, JHEP 03 (2014) 077 [arXiv:1312.5330] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    G. Ferretti, UV Completions of Partial Compositeness: The Case for a SU(4) Gauge Group, JHEP 06 (2014) 142 [arXiv:1404.7137] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    G. Cacciapaglia and F. Sannino, Fundamental Composite (Goldstone) Higgs Dynamics, JHEP 04 (2014) 111 [arXiv:1402.0233] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  64. [64]
    L. Vecchi, A dangerous irrelevant UV-completion of the composite Higgs, JHEP 02 (2017) 094 [arXiv:1506.00623] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    T. Ma and G. Cacciapaglia, Fundamental Composite 2HDM: SU(N) with 4 flavours, JHEP 03 (2016) 211 [arXiv:1508.07014] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    G. Ferretti, Gauge theories of Partial Compositeness: Scenarios for Run-II of the LHC, JHEP 06 (2016) 107 [arXiv:1604.06467] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    F. Sannino, A. Strumia, A. Tesi and E. Vigiani, Fundamental partial compositeness, JHEP 11 (2016) 029 [arXiv:1607.01659] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  68. [68]
    A. Agugliaro, O. Antipin, D. Becciolini, S. De Curtis and M. Redi, UV complete composite Higgs models, Phys. Rev. D 95 (2017) 035019 [arXiv:1609.07122] [INSPIRE].ADSGoogle Scholar
  69. [69]
    Y. Amhis et al., Averages of b-hadron, c-hadron and τ-lepton properties as of summer 2016, arXiv:1612.07233 [INSPIRE].
  70. [70]
    M. Bona, Latest results from Utfit, PoS(CKM2016)096 [http://www.utfit.org/UTfit/].
  71. [71]
    Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  72. [72]
    M. Bordone, D. Buttazzo, G. Isidori and J. Monnard, Probing Lepton Flavour Universality with \( K\to \pi \nu \overline{\nu} \) decays, Eur. Phys. J. C 77 (2017) 618 [arXiv:1705.10729] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    ALEPH, DELPHI, L3, OPAL, SLD collaborations, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavour Group, S. Schael et al., Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [INSPIRE].
  74. [74]
    A. Pich, Precision Tau Physics, Prog. Part. Nucl. Phys. 75 (2014) 41 [arXiv:1310.7922] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    A.J. Buras, S. Jager and J. Urban, Master formulae for Delta F=2 NLO QCD factors in the standard model and beyond, Nucl. Phys. B 605 (2001) 600 [hep-ph/0102316] [INSPIRE].
  76. [76]
    G. Isidori, Flavor physics and CP-violation, arXiv:1302.0661 [INSPIRE].
  77. [77]
    E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators II: Yukawa Dependence, JHEP 01 (2014) 035 [arXiv:1310.4838] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Electroweak symmetry breaking after LEP-1 and LEP-2, Nucl. Phys. B 703 (2004) 127 [hep-ph/0405040] [INSPIRE].

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Dario Buttazzo
    • 1
  • Admir Greljo
    • 1
    • 2
  • Gino Isidori
    • 1
  • David Marzocca
    • 1
  1. 1.Physik-InstitutUniversität ZürichZürichSwitzerland
  2. 2.Faculty of ScienceUniversity of SarajevoSarajevoBosnia and Herzegovina

Personalised recommendations