Journal of High Energy Physics

, 2017:39 | Cite as

Positive geometries and canonical forms

  • Nima Arkani-Hamed
  • Yuntao Bai
  • Thomas Lam
Open Access
Regular Article - Theoretical Physics


Recent years have seen a surprising connection between the physics of scattering amplitudes and a class of mathematical objects — the positive Grassmannian, positive loop Grassmannians, tree and loop Amplituhedra — which have been loosely referred to as “positive geometries”. The connection between the geometry and physics is provided by a unique differential form canonically determined by the property of having logarithmic singularities (only) on all the boundaries of the space, with residues on each boundary given by the canonical form on that boundary. The structures seen in the physical setting of the Amplituhedron are both rigid and rich enough to motivate an investigation of the notions of “positive geometries” and their associated “canonical forms” as objects of study in their own right, in a more general mathematical setting. In this paper we take the first steps in this direction. We begin by giving a precise definition of positive geometries and canonical forms, and introduce two general methods for finding forms for more complicated positive geometries from simpler ones — via “triangulation” on the one hand, and “push-forward” maps between geometries on the other. We present numerous examples of positive geometries in projective spaces, Grassmannians, and toric, cluster and flag varieties, both for the simplest “simplex-like” geometries and the richer “polytope-like” ones. We also illustrate a number of strategies for computing canonical forms for large classes of positive geometries, ranging from a direct determination exploiting knowledge of zeros and poles, to the use of the general triangulation and push-forward methods, to the representation of the form as volume integrals over dual geometries and contour integrals over auxiliary spaces. These methods yield interesting representations for the canonical forms of wide classes of positive geometries, ranging from the simplest Amplituhedra to new expressions for the volume of arbitrary convex polytopes.


Differential and Algebraic Geometry Scattering Amplitudes Supersymmetric Gauge Theory 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    N. Arkani-Hamed, F. Cachazo, C. Cheung and J. Kaplan, A duality for the S-matrix, JHEP 03 (2010) 020 [arXiv:0907.5418] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, JHEP 05 (2013) 135 [arXiv:0905.1473] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    N. Arkani-Hamed et al., Grassmannian geometry of scattering amplitudes, Cambridge University Press, Cambridge U.K., (2016) [INSPIRE].CrossRefMATHGoogle Scholar
  4. [4]
    N. Arkani-Hamed and J. Trnka, The Amplituhedron, JHEP 10 (2014) 030 [arXiv:1312.2007] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  5. [5]
    A. Postnikov, Total positivity, Grassmannians and networks, math/0609764 [INSPIRE].
  6. [6]
    G. Lusztig, Total positivity in reductive groups, in Lie theory and geometry, Birkhäuser Boston U.S.A., (1994), pg. 531.Google Scholar
  7. [7]
    T. Lam, Totally nonnegative Grassmannian and Grassmann polytopes, arXiv:1506.00603 [INSPIRE].
  8. [8]
    N. Arkani-Hamed, A. Hodges and J. Trnka, Positive amplitudes in the Amplituhedron, JHEP 08 (2015) 030 [arXiv:1412.8478] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    R. Hartshorne, Algebraic geometry, Springer Science & Business Media 52, Springer U.S.A., (2013).Google Scholar
  10. [10]
    P.A. Griffiths, Variations on a theorem of Abel, Invent. Math. 35 (1976) 321.ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    A. Knutson, T. Lam and D.E. Speyer, Positroid varieties: juggling and geometry, Compos. Math. 149 (2013) 1710.MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    J.S. Scott, Grassmannians and cluster algebras, Proc. Lond. Math. Soc. 92 (2006) 345.MathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    W. Fulton, Introduction to toric varieties, Annals of Mathematics Studies 131, Princeton University Press, Princeton U.S.A., (1993).Google Scholar
  14. [14]
    F. Sottile, Toric ideals, real toric varieties, and the algebraic moment map, Contemp. Math. 334 (2003) 225 [math.AG/0212044].
  15. [15]
    S. Fomin and A. Zelevinsky, Cluster algebras I: foundations, J. Amer. Math. Soc. 15 (2002) 497.MathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    G. Muller, Locally acyclic cluster algebras, Adv. Math. 233 (2013) 207.MathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    T. Lam and D.E. Speyer, Cohomology of cluster varieties. I. Locally acyclic case, arXiv:1604.06843.
  18. [18]
    K. Rietsch, An algebraic cell decomposition of the nonnegative part of a flag variety, J. Alg. 213 (1999) 144.CrossRefMATHGoogle Scholar
  19. [19]
    A. Knutson, T. Lam and D.E. Speyer, Projections of Richardson varieties, J. Reine Angew. Math. 2014 (2014) 133.MathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    B. Leclerc, Cluster structures on strata of flag varieties, Adv. Math. 300 (2016) 190.MathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    G.M. Ziegler, Lectures on polytopes, Springer Science & Business Media 152, Springer U.S.A., (2012).Google Scholar
  22. [22]
    Y. Bai, S. He and T. Lam, The Amplituhedron and the one-loop Grassmannian measure, JHEP 01 (2016) 112 [arXiv:1510.03553] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    N. Arkani-Hamed and J. Trnka, Into the Amplituhedron, JHEP 12 (2014) 182 [arXiv:1312.7878] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    S.N. Karp, Sign variation, the Grassmannian, and total positivity, J. Comb. Theor. A 145 (2017) 308.MathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    N. Arkani-Hamed, H. Thomas and J. Trnka, Unwinding the Amplituhedron in binary, arXiv:1704.05069 [INSPIRE].
  26. [26]
    R. Britto, F. Cachazo and B. Feng, New recursion relations for tree amplitudes of gluons, Nucl. Phys. B 715 (2005) 499 [hep-th/0412308] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, S. Caron-Huot and J. Trnka, The all-loop integrand for scattering amplitudes in planar N = 4 SYM, JHEP 01 (2011) 041 [arXiv:1008.2958] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    Y. Bai and S. He, The Amplituhedron from momentum twistor diagrams, JHEP 02 (2015) 065 [arXiv:1408.2459] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    S.N. Karp and L.K. Williams, The m = 1 Amplituhedron and cyclic hyperplane arrangements, arXiv:1608.08288 [INSPIRE].
  30. [30]
    N. Arkani-Hamed, Y. Bai and T. Lam, Towards the dual Amplituhedron, in preparation.Google Scholar
  31. [31]
    P. Griffiths and J. Harris, Principles of algebraic geometry, John Wiley & Sons, U.S.A., (2014).MATHGoogle Scholar
  32. [32]
    N. Arkani-Hamed, J. Bourjaily, F. Cachazo and J. Trnka, Local spacetime physics from the Grassmannian, JHEP 01 (2011) 108 [arXiv:0912.3249] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    N. Arkani-Hamed, J. Bourjaily, F. Cachazo and J. Trnka, Unification of residues and Grassmannian dualities, JHEP 01 (2011) 049 [arXiv:0912.4912] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    F. Cachazo, S. He and E.Y. Yuan, Scattering in three dimensions from rational maps, JHEP 10 (2013) 141 [arXiv:1306.2962] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    F. Cachazo, S. He and E.Y. Yuan, Scattering equations and Kawai-Lewellen-Tye orthogonality, Phys. Rev. D 90 (2014) 065001 [arXiv:1306.6575] [INSPIRE].ADSGoogle Scholar
  36. [36]
    F. Cachazo, S. He and E.Y. Yuan, Scattering of massless particles in arbitrary dimensions, Phys. Rev. Lett. 113 (2014) 171601 [arXiv:1307.2199] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    F. Cachazo, S. He and E.Y. Yuan, Scattering of massless particles: scalars, gluons and gravitons, JHEP 07 (2014) 033 [arXiv:1309.0885] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  38. [38]
    P. Filliman, The volume of duals and sections of polytopes, Mathematika 39 (1992) 67.MathSciNetCrossRefMATHGoogle Scholar
  39. [39]
    N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, A. Hodges and J. Trnka, A note on polytopes for scattering amplitudes, JHEP 04 (2012) 081 [arXiv:1012.6030] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  40. [40]
    M.E. Peskin, D.V. Schroeder and E. Martinec, An introduction to quantum field theory, Avalon Publishing, U.S.A., (1995).Google Scholar
  41. [41]
    L. Ferro, T. Lukowski, A. Orta and M. Parisi, Towards the Amplituhedron volume, JHEP 03 (2016) 014 [arXiv:1512.04954] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  42. [42]
    M. Brion and M. Vergne, Arrangement of hyperplanes. I: rational functions and Jeffrey-Kirwan residue, Ann. Sci. École Normale Sup. 32 (1999) 715.Google Scholar
  43. [43]
    V.V. Batyrev and Y. Tschinkel, Manin’s conjecture for toric varieties, J. Alg. Geom. 7 (1998) 15.MathSciNetMATHGoogle Scholar
  44. [44]
    G.M. Ziegler, Nonrational configurations, polytopes, and surfaces, Math. Intell. 30 (2008) 36.MathSciNetCrossRefMATHGoogle Scholar
  45. [45]
    K. Aomoto, Addition theorem of Abel type for hyper-logarithms, Nagoya Math. J. 88 (1982) 55.MathSciNetCrossRefMATHGoogle Scholar
  46. [46]
    N. Arkani-Hamed and E. Yuan, Geometry and algebra of one loop Feynman integrals, in preparation.Google Scholar
  47. [47]
    L. Ferro, T. Lukowski, C. Meneghelli, J. Plefka and M. Staudacher, Spectral parameters for scattering amplitudes in N = 4 super Yang-Mills theory, JHEP 01 (2014) 094 [arXiv:1308.3494] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  48. [48]
    A.G. Khovanskiĭ, Fewnomials, Translations of Mathematical Monographs 88, American Mathematical Society, U.S.A., (1991).Google Scholar
  49. [49]
    H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero: I, Ann. Math. 79 (1964) 109.CrossRefMATHGoogle Scholar
  50. [50]
    A. Björner, M. Las Vergnas, B. Sturmfels, N. White and G. Ziegler, Oriented matroids, Encyclopedia of Mathematics and Its Applications 46, Cambridge University Press, Cambridge U.K., (1999).Google Scholar
  51. [51]
    B. Khesin and A. Rosly, Polar homology and holomorphic bundles, Phil. Trans. Roy. Soc. Lond. A 359 (2001) 1413 [math/0102152] [INSPIRE].

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.School of Natural SciencesInstitute for Advanced StudyPrincetonU.S.A.
  2. 2.Department of PhysicsPrinceton UniversityPrincetonU.S.A.
  3. 3.Department of MathematicsUniversity of MichiganAnn ArborU.S.A.

Personalised recommendations