Journal of High Energy Physics

, 2017:37 | Cite as

Skyrmions, Skyrme stars and black holes with Skyrme hair in five spacetime dimension

  • Yves Brihaye
  • Carlos HerdeiroEmail author
  • Eugen Radu
  • D.H. Tchrakian
Open Access
Regular Article - Theoretical Physics


We consider a class of generalizations of the Skyrme model to five spacetime dimensions (d = 5), which is defined in terms of an O(5) sigma model. A special ansatz for the Skyrme field allows angular momentum to be present and equations of motion with a radial dependence only. Using it, we obtain: 1) everywhere regular solutions describing localised energy lumps (Skyrmions); 2) Self-gravitating, asymptotically flat, everywhere non-singular solitonic solutions (Skyrme stars), upon minimally coupling the model to Einstein’s gravity; 3) both static and spinning black holes with Skyrme hair, the latter with rotation in two orthogonal planes, with both angular momenta of equal magnitude. In the absence of gravity we present an analytic solution that satisfies a BPS-type bound and explore numerically some of the non-BPS solutions. In the presence of gravity, we contrast the solutions to this model with solutions to a complex scalar field model, namely boson stars and black holes with synchronised hair. Remarkably, even though the two models present key differences, and in particular the Skyrme model allows static hairy black holes, when introducing rotation, the synchronisation condition becomes mandatory, providing further evidence for its generality in obtaining rotating hairy black holes.


Black Holes Classical Theories of Gravity 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    T.H.R. Skyrme, A Nonlinear field theory, Proc. Roy. Soc. Lond. A 260 (1961) 127 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    T.H.R. Skyrme, A Unified Field Theory Of Mesons And Baryons, Nucl. Phys. 31 (1962) 556.MathSciNetCrossRefGoogle Scholar
  3. [3]
    E. Witten, Global Aspects of Current Algebra, Nucl. Phys. B 223 (1983) 422 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    E. Witten, Current Algebra, Baryons and Quark Confinement, Nucl. Phys. B 223 (1983) 433 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    C.G. Callan Jr. and E. Witten, Monopole Catalysis of Skyrmion Decay, Nucl. Phys. B 239 (1984) 161 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    I. Floratos and B.M. A.G. Piette, Spherically symmetric solutions of the sixth order SU(N) Skyrme models, J. Math. Phys. 42 (2001) 5580 [hep-th/0109011] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    I. Floratos and B. Piette, Multiskyrmion solutions for the sixth order Skyrme model, Phys. Rev. D 64 (2001) 045009 [hep-th/0103126] [INSPIRE].
  8. [8]
    S.B. Gudnason and M. Nitta, A higher-order Skyrme model, JHEP 09 (2017) 028 [arXiv:1705.03438] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    G.H. Derrick, Comments on nonlinear wave equations as models for elementary particles, J. Math. Phys. 5 (1964) 1252 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    E. Braaten, S. Townsend and L. Carson, Novel Structure of Static Multi-Soliton Solutions in the Skyrme Model, Phys. Lett. B 235 (1990) 147 [INSPIRE].
  11. [11]
    R.A. Battye and P.M. Sutcliffe, Symmetric skyrmions, Phys. Rev. Lett. 79 (1997) 363 [hep-th/9702089] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    R.A. Battye and P.M. Sutcliffe, A Skyrme lattice with hexagonal symmetry, Phys. Lett. B 416 (1998) 385 [hep-th/9709221] [INSPIRE].
  13. [13]
    N.S. Manton and P. Sutcliffe, Topological solitons, Cambridge University Press (2004).Google Scholar
  14. [14]
    E. Ayon-Beato, F. Canfora and J. Zanelli, Analytic self-gravitating Skyrmions, cosmological bounces and AdS wormholes, Phys. Lett. B 752 (2016) 201 [arXiv:1509.02659] [INSPIRE].
  15. [15]
    N.K. Glendenning, T. Kodama and F.R. Klinkhamer, Skyrme topological soliton coupled to gravity, Phys. Rev. D 38 (1988) 3226 [INSPIRE].ADSGoogle Scholar
  16. [16]
    S. Droz, M. Heusler and N. Straumann, New black hole solutions with hair, Phys. Lett. B 268 (1991) 371 [INSPIRE].
  17. [17]
    P. Bizon and T. Chmaj, Gravitating skyrmions, Phys. Lett. B 297 (1992) 55 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    M. Heusler, S. Droz and N. Straumann, Stability analysis of selfgravitating skyrmions, Phys. Lett. B 271 (1991) 61 [INSPIRE].
  19. [19]
    M. Heusler, N. Straumann and Z.-h. Zhou, Selfgravitating solutions of the Skyrme model and their stability, Helv. Phys. Acta 66 (1993) 614 [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  20. [20]
    F. Canfora, N. Dimakis and A. Paliathanasis, Topologically nontrivial configurations in the 4d Einstein-nonlinear σ-model system, Phys. Rev. D 96 (2017) 025021 [arXiv:1707.02270] [INSPIRE].
  21. [21]
    D. Kastor and J.H. Traschen, Horizons inside classical lumps, Phys. Rev. D 46 (1992) 5399 [hep-th/9207070] [INSPIRE].
  22. [22]
    C.A.R. Herdeiro and E. Radu, A new spin on black hole hair, Int. J. Mod. Phys. D 23 (2014) 1442014 [arXiv:1405.3696] [INSPIRE].
  23. [23]
    C.A.R. Herdeiro and E. Radu, Asymptotically flat black holes with scalar hair: a review, Int. J. Mod. Phys. D 24 (2015) 1542014 [arXiv:1504.08209] [INSPIRE].
  24. [24]
    H. Lückock and I. Moss, Black holes have Skyrmion hair, Phys. Lett. B 176 (1986) 341 [INSPIRE].
  25. [25]
    R. Ruffini and J.A. Wheeler, Introducing the black hole, Phys. Today 24 (1971) 30.ADSCrossRefGoogle Scholar
  26. [26]
    H. Luckock, Black hole skyrmions, in String Theory, Quantum Cosmology and Quantum Gravity, Integrable and Conformal Integrable Theories, H.J. De Vega and N. Sanches eds., World Scientific (1987).Google Scholar
  27. [27]
    M.S. Volkov and D.V. Gal’tsov, Gravitating nonAbelian solitons and black holes with Yang-Mills fields, Phys. Rept. 319 (1999) 1 [hep-th/9810070] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    C. Adam, O. Kichakova, Ya. Shnir and A. Wereszczynski, Hairy black holes in the general Skyrme model, Phys. Rev. D 94 (2016) 024060 [arXiv:1605.07625] [INSPIRE].
  29. [29]
    G. Dvali and A. Gußmann, Skyrmion Black Hole Hair: Conservation of Baryon Number by Black Holes and Observable Manifestations, Nucl. Phys. B 913 (2016) 1001 [arXiv:1605.00543] [INSPIRE].
  30. [30]
    S.B. Gudnason, M. Nitta and N. Sawado, Black hole Skyrmion in a generalized Skyrme model, JHEP 09 (2016) 055 [arXiv:1605.07954] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    S.B. Gudnason, M. Nitta and N. Sawado, Gravitating BPS Skyrmions, JHEP 12 (2015) 013 [arXiv:1510.08735] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  32. [32]
    Ya. Shnir, Gravitating sphalerons in the Skyrme model, Phys. Rev. D 92 (2015) 085039 [arXiv:1508.06507] [INSPIRE].
  33. [33]
    R.A. Battye, S. Krusch and P.M. Sutcliffe, Spinning skyrmions and the skyrme parameters, Phys. Lett. B 626 (2005) 120 [hep-th/0507279] [INSPIRE].
  34. [34]
    M.S. Volkov and E. Wohnert, Spinning Q balls, Phys. Rev. D 66 (2002) 085003 [hep-th/0205157] [INSPIRE].
  35. [35]
    B. Kleihaus, J. Kunz and M. List, Rotating boson stars and Q-balls, Phys. Rev. D 72 (2005) 064002 [gr-qc/0505143] [INSPIRE].
  36. [36]
    T. Ioannidou, B. Kleihaus and J. Kunz, Spinning gravitating skyrmions, Phys. Lett. B 643 (2006) 213 [gr-qc/0608110] [INSPIRE].
  37. [37]
    R. Emparan and H.S. Reall, Black Holes in Higher Dimensions, Living Rev. Rel. 11 (2008) 6 [arXiv:0801.3471] [INSPIRE].CrossRefzbMATHGoogle Scholar
  38. [38]
    B.M. A.G. Piette, W.J. Zakrzewski, H.J.W. Mueller-Kirsten and D.H. Tchrakian, A Modified Mottola-Wipf model with sphaleron and instanton fields, Phys. Lett. B 320 (1994) 294 [INSPIRE].
  39. [39]
    B.M.A.G. Piette, B.J. Schroers and W.J. Zakrzewski, Multi-solitons in a two-dimensional Skyrme model, Z. Phys. C 65 (1995) 165 [hep-th/9406160] [INSPIRE].
  40. [40]
    B.M.A.G. Piette, B.J. Schroers and W.J. Zakrzewski, Dynamics of baby skyrmions, Nucl. Phys. B 439 (1995) 205 [hep-ph/9410256] [INSPIRE].
  41. [41]
    K. Arthur, G. Roche, D.H. Tchrakian and Y.S. Yang, Skyrme models with selfdual limits: D = 2,3, J. Math. Phys. 37 (1996) 2569 [INSPIRE].
  42. [42]
    S.R. Coleman, Q Balls, Nucl. Phys. B 262 (1985) 263 [Erratum ibid. B 269 (1986) 744] [INSPIRE].
  43. [43]
    F.E. Schunck and E.W. Mielke, General relativistic boson stars, Class. Quant. Grav. 20 (2003) R301 [arXiv:0801.0307] [INSPIRE].
  44. [44]
    C.A.R. Herdeiro and E. Radu, Kerr black holes with scalar hair, Phys. Rev. Lett. 112 (2014) 221101 [arXiv:1403.2757] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    C.A.R. Herdeiro and E. Radu, Construction and physical properties of Kerr black holes with scalar hair, Class. Quant. Grav. 32 (2015) 144001 [arXiv:1501.04319] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    C.A.R. Herdeiro, E. Radu and H. Rúnarsson, Kerr black holes with self-interacting scalar hair: hairier but not heavier, Phys. Rev. D 92 (2015) 084059 [arXiv:1509.02923] [INSPIRE].
  47. [47]
    U. Ascher, J. Christiansen and R.D. Russell, A Collocation Solver for Mixed Order Systems of Boundary Value Problems, Math. Comput. 33 (1979) 659 [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    A.D. Jackson, A. Wirzba and N.S. Manton, New Skyrmion solutions on a three sphere, Nucl. Phys. A 495 (1989) 499 [INSPIRE].
  49. [49]
    B. Hartmann, B. Kleihaus, J. Kunz and M. List, Rotating Boson Stars in 5 Dimensions, Phys. Rev. D 82 (2010) 084022 [arXiv:1008.3137] [INSPIRE].
  50. [50]
    A.A. Belavin, A.M. Polyakov, A.S. Schwartz and Yu.S. Tyupkin, Pseudoparticle Solutions of the Yang-Mills Equations, Phys. Lett. B 59 (1975) 85 [INSPIRE].
  51. [51]
    E. Radu and D.H. Tchrakian, Self-dual instanton and nonself-dual instanton-antiinstanton solutions in D = 4 Yang-Mills theory, Phys. Lett. B 636 (2006) 201 [hep-th/0603071] [INSPIRE].
  52. [52]
    M.S. Volkov, Gravitating Yang-Mills vortices in 4+1 space-time dimensions, Phys. Lett. B 524 (2002) 369 [hep-th/0103038] [INSPIRE].
  53. [53]
    Y. Brihaye, A. Chakrabarti and D.H. Tchrakian, Particle-like solutions to higher order curvature Einstein- Yang-Mills systems in d-dimensions, Class. Quant. Grav. 20 (2003) 2765 [hep-th/0202141] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. [54]
    Y. Brihaye, A. Chakrabarti, B. Hartmann and D.H. Tchrakian, Higher order curvature generalizations of Bartnick-McKinnon and colored black hole solutions in D = 5, Phys. Lett. B 561 (2003) 161 [hep-th/0212288] [INSPIRE].
  55. [55]
    M. Heusler, No hair theorems and black holes with hair, Helv. Phys. Acta 69 (1996) 501 [gr-qc/9610019] [INSPIRE].
  56. [56]
    M. Heusler and N. Straumann, Scaling arguments for the existence of static, spherically symmetric solutions of self-gravitating systems, Class. Quantum. Grav. 9 (1992) 2177.ADSMathSciNetCrossRefGoogle Scholar
  57. [57]
    F.R. Tangherlini, Schwarzschild field in n dimensions and the dimensionality of space problem, Nuovo Cim. 27 (1963) 636 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. [58]
    P. Breitenlohner, D. Maison and D.H. Tchrakian, Regular solutions to higher order curvature Einstein- Yang-Mills systems in higher dimensions, Class. Quant. Grav. 22 (2005) 5201 [gr-qc/0508027] [INSPIRE].
  59. [59]
    R.C. Myers and M.J. Perry, Black Holes in Higher Dimensional Space-Times, Annals Phys. 172 (1986) 304 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  60. [60]
    R. Bartnik and J. Mckinnon, Particle-like solutions of the Einstein Yang-Mills equations, Phys. Rev. Lett. 61 (1988) 141 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  61. [61]
    K.-M. Lee, V.P. Nair and E.J. Weinberg, Black holes in magnetic monopoles, Phys. Rev. D 45 (1992) 2751 [hep-th/9112008] [INSPIRE].
  62. [62]
    P. Breitenlohner, P. Forgacs and D. Maison, Gravitating monopole solutions, Nucl. Phys. B 383 (1992) 357 [INSPIRE].
  63. [63]
    P. Breitenlohner, P. Forgacs and D. Maison, Gravitating monopole solutions. 2, Nucl. Phys. B 442 (1995) 126 [gr-qc/9412039] [INSPIRE].
  64. [64]
    E. Radu and D.H. Tchrakian, Stable black hole solutions with non-Abelian fields, Phys. Rev. D 85 (2012) 084022 [arXiv:1111.0418] [INSPIRE].
  65. [65]
    C.A.R. Herdeiro, V. Paturyan, E. Radu and D.H. Tchrakian, Reissner-Nordström black holes with non-Abelian hair, Phys. Lett. B 772 (2017) 63 [arXiv:1705.07979] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  66. [66]
    Y. Brihaye, C.A.R. Herdeiro and E. Radu, Myers-Perry black holes with scalar hair and a mass gap, Phys. Lett. B 739 (2014) 1 [arXiv:1408.5581] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  67. [67]
    C.A.R. Herdeiro, J. Kunz, E. Radu and B. Subagyo, Myers-Perry black holes with scalar hair and a mass gap: Unequal spins, Phys. Lett. B 748 (2015) 30 [arXiv:1505.02407] [INSPIRE].
  68. [68]
    D.J. Kaup, Klein-Gordon Geon, Phys. Rev. 172 (1968) 1331 [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    R. Ruffini and S. Bonazzola, Systems of selfgravitating particles in general relativity and the concept of an equation of state, Phys. Rev. 187 (1969) 1767 [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    S. Yoshida and Y. Eriguchi, Rotating boson stars in general relativity, Phys. Rev. D 56 (1997) 762 [INSPIRE].
  71. [71]
    I. Pena and D. Sudarsky, Do collapsed boson stars result in new types of black holes?, Class. Quant. Grav. 14 (1997) 3131 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  72. [72]
    A.M. Polyakov and A.A. Belavin, Metastable States of Two-Dimensional Isotropic Ferromagnets, JETP Lett. 22 (1975) 245 [Pisma Zh. Eksp. Teor. Fiz. 22 (1975) 503] [INSPIRE].
  73. [73]
    D.H. Tchrakian, Higgs-and Skyrme-Chern-Simons densities in all dimensions, J. Phys. A 48 (2015) 375401 [arXiv:1505.05344] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  74. [74]
    N.S. Manton and P.J. Ruback, Skyrmions in Flat Space and Curved Space, Phys. Lett. B 181 (1986) 137 [INSPIRE].
  75. [75]
    N.S. Manton, Geometry of Skyrmions, Commun. Math. Phys. 111 (1987) 469 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  76. [76]
    F. Canfora, F. Correa and J. Zanelli, Exact multisoliton solutions in the four-dimensional Skyrme model, Phys. Rev. D 90 (2014) 085002 [arXiv:1406.4136] [INSPIRE].
  77. [77]
    C.J. Houghton, N.S. Manton and P.M. Sutcliffe, Rational maps, monopoles and Skyrmions, Nucl. Phys. B 510 (1998) 507 [hep-th/9705151] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  78. [78]
    M.F. Atiyah and N.S. Manton, Skyrmions From Instantons, Phys. Lett. B 222 (1989) 438 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  79. [79]
    N.S. Manton and T.M. Samols, Skyrmions on S 3 and H 3 From Instantons, J. Phys. A 23 (1990) 3749 [INSPIRE].
  80. [80]
    A. Nakamula, S. Sasaki and K. Takesue, Atiyah-Manton Construction of Skyrmions in Eight Dimensions, JHEP 03 (2017) 076 [arXiv:1612.06957] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  81. [81]
    D.H. Tchrakian, Spherically Symmetric Gauge Field Configurations With Finite Action in 4 p-dimensions (p = Integer), Phys. Lett. B 150 (1985) 360 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  82. [82]
    B. Grossman, T.W. Kephart and J.D. Stasheff, Solutions to Yang-Mills Field Equations in Eight-dimensions and the Last Hopf Map, Commun. Math. Phys. 96 (1984) 431 [Erratum ibid. 100 (1985) 311] [INSPIRE].
  83. [83]
    A. Chakrabarti, T.N. Sherry and D.H. Tchrakian, On axially symmetric selfdual gauge field configurations in 4p dimensions, Phys. Lett. 162B (1985) 340 [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    D.H. Tchrakian and A. Chakrabarti, How overdetermined are the generalized selfduality relations?, J. Math. Phys. 32 (1991) 2532 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Physique-Mathématique, Universite de Mons-HainautMonsBelgium
  2. 2.Departamento de Física da Universidade de Aveiro and Centre for Research and Development in Mathematics and Applications (CIDMA)AveiroPortugal
  3. 3.School of Theoretical Physics — Dublin Institute for Advanced StudiesDublin 4Ireland
  4. 4.Department of Computer ScienceMaynooth UniversityMaynoothIreland

Personalised recommendations