Advertisement

Journal of High Energy Physics

, 2017:19 | Cite as

Holographic correlation functions in Critical Gravity

  • Giorgos Anastasiou
  • Rodrigo Olea
Open Access
Regular Article - Theoretical Physics

Abstract

We compute the holographic stress tensor and the logarithmic energy-momentum tensor of Einstein-Weyl gravity at the critical point. This computation is carried out performing a holographic expansion in a bulk action supplemented by the Gauss-Bonnet term with a fixed coupling. The renormalization scheme defined by the addition of this topological term has the remarkable feature that all Einstein modes are identically cancelled both from the action and its variation. Thus, what remains comes from a nonvanishing Bach tensor, which accounts for non-Einstein modes associated to logarithmic terms which appear in the expansion of the metric. In particular, we compute the holographic 1-point functions for a generic boundary geometric source.

Keywords

AdS-CFT Correspondence Gauge-gravity correspondence Models of Quantum Gravity 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M.H. Goroff and A. Sagnotti, The Ultraviolet Behavior of Einstein Gravity, Nucl. Phys. B 266 (1986) 709 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    K.S. Stelle, Renormalization of Higher Derivative Quantum Gravity, Phys. Rev. D 16 (1977) 953 [INSPIRE].ADSMathSciNetGoogle Scholar
  3. [3]
    S.L. Adler, Einstein Gravity as a Symmetry Breaking Effect in Quantum Field Theory, Rev. Mod. Phys. 54 (1982) 729 [Erratum ibid. 55 (1983) 837] [INSPIRE].
  4. [4]
    K.S. Stelle, Classical Gravity with Higher Derivatives, Gen. Rel. Grav. 9 (1978) 353 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    E.A. Bergshoeff, O. Hohm and P.K. Townsend, Massive Gravity in Three Dimensions, Phys. Rev. Lett. 102 (2009) 201301 [arXiv:0901.1766] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    S. Deser and B. Tekin, Massive, topologically massive, models, Class. Quant. Grav. 19 (2002) L97 [hep-th/0203273] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    H. Lü and C.N. Pope, Critical Gravity in Four Dimensions, Phys. Rev. Lett. 106 (2011) 181302 [arXiv:1101.1971] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    G. Anastasiou, R. Olea and D. Rivera-Betancour, Noether-Wald energy in Critical Gravity, arXiv:1707.00341 [INSPIRE].
  9. [9]
    J. Maldacena, Einstein Gravity from Conformal Gravity, arXiv:1105.5632 [INSPIRE].
  10. [10]
    G. Anastasiou and R. Olea, From conformal to Einstein Gravity, Phys. Rev. D 94 (2016) 086008 [arXiv:1608.07826] [INSPIRE].ADSMathSciNetGoogle Scholar
  11. [11]
    M. Alishahiha and R. Fareghbal, D-Dimensional Log Gravity, Phys. Rev. D 83 (2011) 084052 [arXiv:1101.5891] [INSPIRE].ADSGoogle Scholar
  12. [12]
    E.A. Bergshoeff, O. Hohm, J. Rosseel and P.K. Townsend, Modes of Log Gravity, Phys. Rev. D 83 (2011) 104038 [arXiv:1102.4091] [INSPIRE].ADSGoogle Scholar
  13. [13]
    I. Gullu, M. Gurses, T.C. Sisman and B. Tekin, AdS Waves as Exact Solutions to Quadratic Gravity, Phys. Rev. D 83 (2011) 084015 [arXiv:1102.1921] [INSPIRE].ADSGoogle Scholar
  14. [14]
    V. Gurarie, Logarithmic operators in conformal field theory, Nucl. Phys. B 410 (1993) 535 [hep-th/9303160] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    J.S. Caux, I.I. Kogan and A.M. Tsvelik, Logarithmic operators and hidden continuous symmetry in critical disordered models, Nucl. Phys. B 466 (1996) 444 [hep-th/9511134] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    N. Johansson, A. Naseh and T. Zojer, Holographic two-point functions for 4d log-gravity, JHEP 09 (2012) 114 [arXiv:1205.5804] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    O. Mišković, R. Olea and M. Tsoukalas, Renormalized AdS action and Critical Gravity, JHEP 08 (2014) 108 [arXiv:1404.5993] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  18. [18]
    S.W. MacDowell and F. Mansouri, Unified Geometric Theory of Gravity and Supergravity, Phys. Rev. Lett. 38 (1977) 739 [Erratum ibid. 38 (1977) 1376] [INSPIRE].
  19. [19]
    R. Olea, Mass, angular momentum and thermodynamics in four-dimensional Kerr-AdS black holes, JHEP 06 (2005) 023 [hep-th/0504233] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    O. Mišković and R. Olea, Topological regularization and self-duality in four-dimensional anti-de Sitter gravity, Phys. Rev. D 79 (2009) 124020 [arXiv:0902.2082] [INSPIRE].ADSMathSciNetGoogle Scholar
  21. [21]
    V. Balasubramanian and P. Kraus, A Stress tensor for Anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    R. Emparan, C.V. Johnson and R.C. Myers, Surface terms as counterterms in the AdS/CFT correspondence, Phys. Rev. D 60 (1999) 104001 [hep-th/9903238] [INSPIRE].ADSMathSciNetGoogle Scholar
  23. [23]
    H. Lü, Y. Pang and C.N. Pope, Conformal Gravity and Extensions of Critical Gravity, Phys. Rev. D 84 (2011) 064001 [arXiv:1106.4657] [INSPIRE].ADSGoogle Scholar
  24. [24]
    M. Porrati and M.M. Roberts, Ghosts of Critical Gravity, Phys. Rev. D 84 (2011) 024013 [arXiv:1104.0674] [INSPIRE].ADSGoogle Scholar
  25. [25]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    D. Grumiller and N. Johansson, Consistent boundary conditions for cosmological topologically massive gravity at the chiral point, Int. J. Mod. Phys. D 17 (2009) 2367 [arXiv:0808.2575] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  27. [27]
    M. Alishahiha and A. Naseh, Holographic renormalization of new massive gravity, Phys. Rev. D 82 (2010) 104043 [arXiv:1005.1544] [INSPIRE].ADSGoogle Scholar
  28. [28]
    K. Skenderis, M. Taylor and B.C. van Rees, Topologically Massive Gravity and the AdS/CFT Correspondence, JHEP 09 (2009) 045 [arXiv:0906.4926] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Departamento de Ciencias FísicasUniversidad Andres BelloSantiagoChile

Personalised recommendations