Advertisement

A neutrinophilic 2HDM as a UV completion for the inverse seesaw mechanism

  • Enrico Bertuzzo
  • Pedro A. N. Machado
  • Zahra Tabrizi
  • Renata Zukanovich Funchal
Open Access
Regular Article - Theoretical Physics

Abstract

In Neutrinophilic Two Higgs Doublet Models, Dirac neutrino masses are obtained by forbidding a Majorana mass term for the right-handed neutrinos via a symmetry. We study a variation of such models in which that symmetry is taken to be a local U(1), leading naturally to the typical Lagrangian of the inverse seesaw scenario. The presence of a new gauge boson and of an extended scalar sector result in a rich phenomenology, including modifications to Z, Higgs and kaon decays as well as to electroweak precision parameters, and a pseudoscalar associated to the breaking of lepton number.

Keywords

Beyond Standard Model Higgs Physics Neutrino Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  2. [2]
    Troitsk collaboration, V.N. Aseev et al., An upper limit on electron antineutrino mass from Troitsk experiment, Phys. Rev. D 84 (2011) 112003 [arXiv:1108.5034] [INSPIRE].
  3. [3]
    P. Minkowski, μeγ at a Rate of One Out of 109 Muon Decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].
  4. [4]
    R.N. Mohapatra and G. Senjanović, Neutrino Mass and Spontaneous Parity Violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    J. Schechter and J.W.F. Valle, Neutrino Masses in SU(2) × U(1) Theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].ADSGoogle Scholar
  6. [6]
    D. Wyler and L. Wolfenstein, Massless Neutrinos in Left-Right Symmetric Models, Nucl. Phys. B 218 (1983) 205 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    R.N. Mohapatra and J.W.F. Valle, Neutrino Mass and Baryon Number Nonconservation in Superstring Models, Phys. Rev. D 34 (1986) 1642 [INSPIRE].ADSGoogle Scholar
  8. [8]
    M.C. Gonzalez-Garcia and J.W.F. Valle, Fast Decaying Neutrinos and Observable Flavor Violation in a New Class of Majoron Models, Phys. Lett. B 216 (1989) 360 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    S. Gabriel and S. Nandi, A New two Higgs doublet model, Phys. Lett. B 655 (2007) 141 [hep-ph/0610253] [INSPIRE].
  10. [10]
    N. Haba and K. Tsumura, ν-Two Higgs Doublet Model and its Collider Phenomenology, JHEP 06 (2011) 068 [arXiv:1105.1409] [INSPIRE].
  11. [11]
    S.M. Davidson and H.E. Logan, Dirac neutrinos from a second Higgs doublet, Phys. Rev. D 80 (2009) 095008 [arXiv:0906.3335] [INSPIRE].ADSGoogle Scholar
  12. [12]
    P.A.N. Machado, Y.F. Perez-Gonzalez, O. Sumensari, Z.K. Tabrizi and R. Zukanovich Funchal, On the Viability of Minimal Neutrinophilic Two-Higgs-Doublet Models, JHEP 12 (2015) 160 [arXiv:1507.07550] [INSPIRE].ADSGoogle Scholar
  13. [13]
    E. Bertuzzo, Y.F. Perez-Gonzalez, O. Sumensari and R. Zukanovich Funchal, Limits on Neutrinophilic Two-Higgs-Doublet Models from Flavor Physics, JHEP 01 (2016) 018 [arXiv:1510.04284] [INSPIRE].CrossRefGoogle Scholar
  14. [14]
    A.G. Dias, C.A. de S. Pires, P.S. Rodrigues da Silva and A. Sampieri, A Simple Realization of the Inverse Seesaw Mechanism, Phys. Rev. D 86 (2012) 035007 [arXiv:1206.2590] [INSPIRE].
  15. [15]
    S.S.C. Law and K.L. McDonald, Generalized inverse seesaw mechanisms, Phys. Rev. D 87 (2013) 113003 [arXiv:1303.4887] [INSPIRE].ADSGoogle Scholar
  16. [16]
    S. Fraser, E. Ma and O. Popov, Scotogenic Inverse Seesaw Model of Neutrino Mass, Phys. Lett. B 737 (2014) 280 [arXiv:1408.4785] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  17. [17]
    M. Aoki, N. Haba and R. Takahashi, A model realizing inverse seesaw and resonant leptogenesis, Prog. Theor. Exp. Phys. 2015 (2015) 113B03 [arXiv:1506.06946] [INSPIRE].
  18. [18]
    W. Wang and Z.-L. Han, Global U(1)L Breaking in Neutrinophilic 2HDM: From LHC Signatures to X-Ray Line, Phys. Rev. D 94 (2016) 053015 [arXiv:1605.00239] [INSPIRE].ADSGoogle Scholar
  19. [19]
    Y. Chikashige, R.N. Mohapatra and R.D. Peccei, Are There Real Goldstone Bosons Associated with Broken Lepton Number?, Phys. Lett. B 98 (1981) 265 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    G.B. Gelmini and M. Roncadelli, Left-Handed Neutrino Mass Scale and Spontaneously Broken Lepton Number, Phys. Lett. B 99 (1981) 411 [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    D. Cadamuro, Cosmological limits on axions and axion-like particles, arXiv:1210.3196 [INSPIRE].
  22. [22]
    I.Z. Rothstein, K.S. Babu and D. Seckel, Planck scale symmetry breaking and majoron physics, Nucl. Phys. B 403 (1993) 725 [hep-ph/9301213] [INSPIRE].
  23. [23]
    A. Drozd, B. Grzadkowski, J.F. Gunion and Y. Jiang, Extending two-Higgs-doublet models by a singlet scalar field — the Case for Dark Matter, JHEP 11 (2014) 105 [arXiv:1408.2106] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].ADSGoogle Scholar
  25. [25]
    I. Maksymyk, C.P. Burgess and D. London, Beyond S, T and U, Phys. Rev. D 50 (1994) 529 [hep-ph/9306267] [INSPIRE].
  26. [26]
    C.P. Burgess, S. Godfrey, H. Konig, D. London and I. Maksymyk, A Global fit to extended oblique parameters, Phys. Lett. B 326 (1994) 276 [hep-ph/9307337] [INSPIRE].
  27. [27]
    W. Grimus, L. Lavoura, O.M. Ogreid and P. Osland, The Oblique parameters in multi-Higgs-doublet models, Nucl. Phys. B 801 (2008) 81 [arXiv:0802.4353] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  28. [28]
    Gfitter Group collaboration, M. Baak et al., The global electroweak fit at NNLO and prospects for the LHC and ILC, Eur. Phys. J. C 74 (2014) 3046 [arXiv:1407.3792] [INSPIRE].
  29. [29]
    J. Ellis and T. You, Updated Global Analysis of Higgs Couplings, JHEP 06 (2013) 103 [arXiv:1303.3879] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    A. Denner, S. Heinemeyer, I. Puljak, D. Rebuzzi and M. Spira, Standard Model Higgs-Boson Branching Ratios with Uncertainties, Eur. Phys. J. C 71 (2011) 1753 [arXiv:1107.5909] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    ATLAS and CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s}=7 \) and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE].
  32. [32]
    LEP, DELPHI, OPAL, ALEPH and L3 collaborations, G. Abbiendi et al., Search for Charged Higgs bosons: Combined Results Using LEP Data, Eur. Phys. J. C 73 (2013) 2463 [arXiv:1301.6065] [INSPIRE].
  33. [33]
    CMS collaboration, Searches for electroweak production of charginos, neutralinos and sleptons decaying to leptons and W, Z and Higgs bosons in pp collisions at 8 TeV, Eur. Phys. J. C 74 (2014) 3036 [arXiv:1405.7570] [INSPIRE].
  34. [34]
    E949 collaboration, V.V. Anisimovsky et al., Improved measurement of the \( {K}^{+}\to {\pi}^{+}\nu \overline{\nu} \) branching ratio, Phys. Rev. Lett. 93 (2004) 031801 [hep-ex/0403036] [INSPIRE].
  35. [35]
    E949 collaboration, A.V. Artamonov et al., New measurement of the \( {K}^{+}\to {\pi}^{+}\nu \overline{\nu} \) branching ratio, Phys. Rev. Lett. 101 (2008) 191802 [arXiv:0808.2459] [INSPIRE].
  36. [36]
    H. Davoudiasl, H.-S. Lee and W.J. Marciano, Muon g − 2, rare kaon decays and parity violation from dark bosons, Phys. Rev. D 89 (2014) 095006 [arXiv:1402.3620] [INSPIRE].ADSGoogle Scholar
  37. [37]
    H. Davoudiasl, H.-S. Lee and W.J. Marciano, “Dark” Z implications for Parity Violation, Rare Meson Decays and Higgs Physics, Phys. Rev. D 85 (2012) 115019 [arXiv:1203.2947] [INSPIRE].ADSGoogle Scholar
  38. [38]
    M. Misiak and M. Steinhauser, Weak radiative decays of the B meson and bounds on \( {M}_{H^{\pm }} \) in the Two-Higgs-Doublet Model, Eur. Phys. J. C 77 (2017) 201 [arXiv:1702.04571] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    P. Arnan, D. Bečirević, F. Mescia and O. Sumensari, Two Higgs Doublet Models and bs exclusive decays, arXiv:1703.03426 [INSPIRE].
  40. [40]
    F. Bossi, Dark Photon Searches Using Displaced Vertices at Low Energy e + e Colliders, Adv. High Energy Phys. 2014 (2014) 891820 [arXiv:1310.8181] [INSPIRE].CrossRefGoogle Scholar
  41. [41]
    K.S. Babu, A. Friedland, P.A.N. Machado and I. Mocioiu, Flavor Gauge Models Below the Fermi Scale, arXiv:1705.01822 [INSPIRE].
  42. [42]
    Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  43. [43]
    BaBar collaboration, J.P. Lees et al., Search for a Dark Photon in e + e Collisions at BaBar, Phys. Rev. Lett. 113 (2014) 201801 [arXiv:1406.2980] [INSPIRE].
  44. [44]
    G. Ruggiero for the NA62 collaboration, The NA62 Experiment: Prospects for the \( {K}^{+}\to {\pi}^{+}\nu \overline{\nu} \) Measurement, PoS(KAON13)032 [INSPIRE].
  45. [45]
    ORKA collaboration, E.T. Worcester, ORKA: The Golden Kaon Experiment, Nucl. Phys. Proc. Suppl. 233 (2012) 285 [arXiv:1211.4883] [INSPIRE].
  46. [46]
    W.M. Bonivento, The SHiP experiment at CERN, J. Phys. Conf. Ser. 878 (2017) 012014 [INSPIRE].CrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Enrico Bertuzzo
    • 1
  • Pedro A. N. Machado
    • 2
  • Zahra Tabrizi
    • 1
  • Renata Zukanovich Funchal
    • 1
  1. 1.Departamento de Física Matemática, Instituto de FísicaUniversidade de São PauloSão PauloBrazil
  2. 2.Departamento de Física Matemática, Instituto de FísicaUniversidade de São PauloSão PauloBrazil

Personalised recommendations