Advertisement

Precise predictions for the angular coefficients in Z-boson production at the LHC

  • R. GauldEmail author
  • A. Gehrmann-De Ridder
  • T. Gehrmann
  • E.W.N. Glover
  • A. Huss
Open Access
Regular Article - Theoretical Physics

Abstract

The angular distributions of lepton pairs in the Drell-Yan process can provide rich information on the underlying QCD production mechanisms. These dynamics can be parameterised in terms of a set of frame dependent angular coefficients, Ai=0,…,7, which depend on the invariant mass, transverse momentum, and rapidity of the lepton pair. Motivated by recent measurements of these coefficients by ATLAS and CMS, and in particular by the apparent violation of the Lam-Tung relation A0A2 = 0, we perform a precision study of the angular coefficients at \( \mathcal{O}\left({\alpha}_{\mathrm{s}}^3\right) \) in perturbative QCD. We make predic-tions relevant for pp collisions at \( \sqrt{s}=8 \) TeV, and perform comparisons with the available ATLAS and CMS data as well as providing predictions for a prospective measurement at LHCb. To expose the violation of the Lam-Tung relationship we propose a new observable ΔLT = 1 − A2/A0 that is more sensitive to the dynamics in the region where A0 and A2 are both small. We find that the \( \mathcal{O}\left({\alpha}_{\mathrm{s}}^3\right) \) corrections have an important impact on the pT,Z distributions for several of the angular coefficients, and are essential to provide an adequate description of the data. The compatibility of the available ATLAS and CMS data is reassessed by performing a partial χ2 test with respect to the central theoretical prediction which shows that χ2/Ndata is significantly reduced by going from \( \mathcal{O}\left({\alpha}_{\mathrm{s}}^2\right) \) to \( \mathcal{O}\left({\alpha}_{\mathrm{s}}^3\right) \).

Keywords

QCD Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    CDF collaboration, T.A. Aaltonen et al., Measurement of dσ/dy of Drell-Yan e + e pairs in the Z Mass Region from \( p\overline{p} \) Collisions at \( \sqrt{s}=1 \) .96 TeV, Phys. Lett. B 692 (2010) 232 [arXiv:0908.3914] [INSPIRE].
  2. [2]
    D0 collaboration, V.M. Abazov et al., Measurement of the shape of the boson rapidity distribution for \( p\overline{p} \)Z/gamma e + e + X events produced at \( \sqrt{s}=1.96 \) TeV, Phys. Rev. D 76 (2007) 012003 [hep-ex/0702025] [INSPIRE].
  3. [3]
    ATLAS collaboration, Measurement of the Z/γ boson transverse momentum distribution in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, JHEP 09 (2014) 145 [arXiv:1406.3660] [INSPIRE].
  4. [4]
    CMS collaboration, Measurement of the Z boson differential cross section in transverse momentum and rapidity in proton-proton collisions at 8 TeV, Phys. Lett. B 749 (2015) 187 [arXiv:1504.03511] [INSPIRE].
  5. [5]
    CMS collaboration, Measurement of the Rapidity and Transverse Momentum Distributions of Z Bosons in pp Collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. D 85 (2012) 032002 [arXiv:1110.4973] [INSPIRE].
  6. [6]
    ATLAS collaboration, Measurement of the transverse momentum and ϕ η* distributions of Drell-Yan lepton pairs in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 76 (2016) 291 [arXiv:1512.02192] [INSPIRE].
  7. [7]
    LHCb collaboration, Measurement of the forward Z boson production cross-section in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 08 (2015) 039 [arXiv:1505.07024] [INSPIRE].
  8. [8]
    LHCb collaboration, Measurement of forward W and Z boson production in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP 01(2016) 155 [arXiv:1511.08039] [INSPIRE].
  9. [9]
    LHCb collaboration, Measurement of the forward Z boson production cross-section in pp collisions at \( \sqrt{s}=13 \) TeV, JHEP 09 (2016) 136 [arXiv:1607.06495] [INSPIRE].
  10. [10]
    J.C. Collins and D.E. Soper, Angular Distribution of Dileptons in High-Energy Hadron Collisions, Phys. Rev. D 16 (1977) 2219 [INSPIRE].ADSGoogle Scholar
  11. [11]
    C.S. Lam and W.-K. Tung, A Systematic Approach to Inclusive Lepton Pair Production in Hadronic Collisions, Phys. Rev. D 18 (1978) 2447 [INSPIRE].ADSGoogle Scholar
  12. [12]
    C.S. Lam and W.-K. Tung, Structure Function Relations at Large Transverse Momenta in Lepton Pair Production Processes, Phys. Lett. 80B (1979) 228 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    C.S. Lam and W.-K. Tung, A Parton Model Relation Sans QCD Modifications in Lepton Pair Productions, Phys. Rev. D 21 (1980) 2712 [INSPIRE].ADSGoogle Scholar
  14. [14]
    E. Mirkes, Angular decay distribution of leptons from W bosons at NLO in hadronic collisions, Nucl. Phys. B 387 (1992) 3 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    E. Mirkes and J. Ohnemus, W and Z polarization effects in hadronic collisions, Phys. Rev. D 50 (1994) 5692 [hep-ph/9406381] [INSPIRE].
  16. [16]
    E. Mirkes and J. Ohnemus, Angular distributions of Drell-Yan lepton pairs at the Tevatron: Order α s2 corrections and Monte Carlo studies, Phys. Rev. D 51 (1995) 4891 [hep-ph/9412289] [INSPIRE].
  17. [17]
    CMS collaboration, Measurement of the weak mixing angle with the Drell-Yan process in proton-proton collisions at the LHC, Phys. Rev. D 84 (2011) 112002 [arXiv:1110.2682] [INSPIRE].
  18. [18]
    CDF collaboration, T.A. Aaltonen et al., Indirect measurement of sin2 θ W (or M W ) using μ + μ pairs from γ /Z bosons produced in pp collisions at a center-of-momentum energy of 1.96 TeV, Phys. Rev. D 89 (2014) 072005 [arXiv:1402.2239] [INSPIRE].
  19. [19]
    D0 collaboration, V.M. Abazov et al., Measurement of the effective weak mixing angle in \( p\overline{p}\to Z/{\gamma}^{\ast}\to {e}^{+}{e}^{-} \) events, Phys. Rev. Lett. 115(2015) 041801 [arXiv:1408.5016] [INSPIRE].
  20. [20]
    ATLAS collaboration, Measurement of the forward-backward asymmetry of electron and muon pair-production in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, JHEP 09 (2015) 049 [arXiv:1503.03709] [INSPIRE].
  21. [21]
    LHCb collaboration, Measurement of the forward-backward asymmetry in Z/γ μ + μ decays and determination of the effective weak mixing angle, JHEP 11 (2015) 190 [arXiv:1509.07645] [INSPIRE].
  22. [22]
    S. Catani, L. Cieri, G. Ferrera, D. de Florian and M. Grazzini, Vector boson production at hadron colliders: a fully exclusive QCD calculation at NNLO, Phys. Rev. Lett. 103 (2009) 082001 [arXiv:0903.2120] [INSPIRE].
  23. [23]
    R. Gavin, Y. Li, F. Petriello and S. Quackenbush, FEWZ 2.0: A code for hadronic Z production at next-to-next-to-leading order, Comput. Phys. Commun. 182 (2011) 2388 [arXiv:1011.3540] [INSPIRE].
  24. [24]
    A. Karlberg, E. Re and G. Zanderighi, NNLOPS accurate Drell-Yan production, JHEP 09 (2014) 134 [arXiv:1407.2940] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    M. Lambertsen and W. Vogelsang, Drell-Yan lepton angular distributions in perturbative QCD, Phys. Rev. D 93 (2016) 114013 [arXiv:1605.02625] [INSPIRE].ADSGoogle Scholar
  26. [26]
    L. Motyka, M. Sadzikowski and T. Stebel, Lam-Tung relation breaking in Z 0 hadroproduction as a probe of parton transverse momentum, Phys. Rev. D 95 (2017) 114025 [arXiv:1609.04300] [INSPIRE].ADSGoogle Scholar
  27. [27]
    NA10 collaboration, M. Guanziroli et al., Angular Distributions of Muon Pairs Produced by Negative Pions on Deuterium and Tungsten, Z. Phys. C 37 (1988) 545 [INSPIRE].
  28. [28]
    J.S. Conway et al., Experimental Study of Muon Pairs Produced by 252-GeV Pions on Tungsten, Phys. Rev. D 39 (1989) 92 [INSPIRE].ADSGoogle Scholar
  29. [29]
    NuSea collaboration, L.Y. Zhu et al., Measurement of Angular Distributions of Drell-Yan Dimuons in p + d Interaction at 800-GeV/c, Phys. Rev. Lett. 99 (2007) 082301 [hep-ex/0609005] [INSPIRE].
  30. [30]
    NuSea collaboration, L.Y. Zhu et al., Measurement of Angular Distributions of Drell-Yan Dimuons in p + p Interactions at 800-GeV/c, Phys. Rev. Lett. 102 (2009) 182001 [arXiv:0811.4589] [INSPIRE].
  31. [31]
    CDF collaboration, T. Aaltonen et al., First Measurement of the Angular Coefficients of Drell-Yan e + e pairs in the Z Mass Region from \( p\overline{p} \) Collisions at \( \sqrt{s}=1.96 \) TeV, Phys. Rev. Lett. 106 (2011) 241801 [arXiv:1103.5699] [INSPIRE].
  32. [32]
    CMS collaboration, Angular coefficients of Z bosons produced in pp collisions at \( \sqrt{s}=8 \) TeV and decaying to μ + μ as a function of transverse momentum and rapidity, Phys. Lett. B 750 (2015) 154 [arXiv:1504.03512] [INSPIRE].
  33. [33]
    ATLAS collaboration, Measurement of the angular coefficients in Z-boson events using electron and muon pairs from data taken at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 08 (2016) 159 [arXiv:1606.00689] [INSPIRE].
  34. [34]
    A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, A. Huss and T.A. Morgan, The NNLO QCD corrections to Z boson production at large transverse momentum, JHEP 07 (2016) 133 [arXiv:1605.04295] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, A. Huss and T.A. Morgan, NNLO QCD corrections for Drell-Yan p TZ and \( \phi \) observables at the LHC, JHEP 11 (2016) 094 [arXiv:1610.01843] [INSPIRE].
  36. [36]
    A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, A. Huss and T.A. Morgan, Precise QCD predictions for the production of a Z boson in association with a hadronic jet, Phys. Rev. Lett. 117 (2016) 022001 [arXiv:1507.02850] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    N. Arteaga-Romero, A. Nicolaidis and J. Silva, Z 0 Production at the pp Collider and the Spin of the Gluon, Phys. Rev. Lett. 52 (1984) 172 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    W.T. Giele, E.W.N. Glover and D.A. Kosower, Higher order corrections to jet cross-sections in hadron colliders, Nucl. Phys. B 403 (1993) 633 [hep-ph/9302225] [INSPIRE].
  39. [39]
    A. Denner, S. Dittmaier, T. Kasprzik and A. Muck, Electroweak corrections to dilepton + jet production at hadron colliders, JHEP 06 (2011) 069 [arXiv:1103.0914] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    R. Boughezal et al., Z-boson production in association with a jet at next-to-next-to-leading order in perturbative QCD, Phys. Rev. Lett. 116 (2016) 152001 [arXiv:1512.01291] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Antenna subtraction at NNLO, JHEP 09 (2005) 056 [hep-ph/0505111] [INSPIRE].
  42. [42]
    A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Gluon-gluon antenna functions from Higgs boson decay, Phys. Lett. B 612 (2005) 49 [hep-ph/0502110] [INSPIRE].
  43. [43]
    A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Quark-gluon antenna functions from neutralino decay, Phys. Lett. B 612 (2005) 36 [hep-ph/0501291] [INSPIRE].
  44. [44]
    A. Daleo, T. Gehrmann and D. Maître, Antenna subtraction with hadronic initial states, JHEP 04 (2007) 016 [hep-ph/0612257] [INSPIRE].
  45. [45]
    A. Daleo, A. Gehrmann-De Ridder, T. Gehrmann and G. Luisoni, Antenna subtraction at NNLO with hadronic initial states: initial-final configurations, JHEP 01 (2010) 118 [arXiv:0912.0374] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  46. [46]
    R. Boughezal, A. Gehrmann-De Ridder and M. Ritzmann, Antenna subtraction at NNLO with hadronic initial states: double real radiation for initial-initial configurations with two quark flavours, JHEP 02 (2011) 098 [arXiv:1011.6631] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  47. [47]
    T. Gehrmann and P.F. Monni, Antenna subtraction at NNLO with hadronic initial states: real-virtual initial-initial configurations, JHEP 12 (2011) 049 [arXiv:1107.4037] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  48. [48]
    A. Gehrmann-De Ridder, T. Gehrmann and M. Ritzmann, Antenna subtraction at NNLO with hadronic initial states: double real initial-initial configurations, JHEP 10 (2012) 047 [arXiv:1207.5779] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  49. [49]
    J. Currie, E.W.N. Glover and S. Wells, Infrared Structure at NNLO Using Antenna Subtraction, JHEP 04 (2013) 066 [arXiv:1301.4693] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    J. Fleischer, O.V. Tarasov and F. Jegerlehner, Two loop heavy top corrections to the rho parameter: A Simple formula valid for arbitrary Higgs mass, Phys. Lett. B 319 (1993) 249 [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    J. Butterworth et al., PDF4LHC recommendations for LHC Run II, J. Phys. G 43 (2016) 023001 [arXiv:1510.03865] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    S. Dulat et al., New parton distribution functions from a global analysis of quantum chromodynamics, Phys. Rev. D 93 (2016) 033006 [arXiv:1506.07443] [INSPIRE].ADSGoogle Scholar
  53. [53]
    L.A. Harland-Lang, A.D. Martin, P. Motylinski and R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs, Eur. Phys. J. C 75 (2015) 204 [arXiv:1412.3989] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    NNPDF collaboration, R.D. Ball et al., Parton distributions for the LHC Run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE].
  55. [55]
    J. Gao and P. Nadolsky, A meta-analysis of parton distribution functions, JHEP 07 (2014) 035 [arXiv:1401.0013] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    S. Carrazza, S. Forte, Z. Kassabov, J.I. Latorre and J. Rojo, An Unbiased Hessian Representation for Monte Carlo PDFs, Eur. Phys. J. C 75 (2015) 369 [arXiv:1505.06736] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    G. Bozzi, L. Citelli, M. Vesterinen and A. Vicini, Prospects for improving the LHC W boson mass measurement with forward muons, Eur. Phys. J. C 75 (2015) 601 [arXiv:1508.06954] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    ATLAS collaboration, Measurement of the W -boson mass in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, arXiv:1701.07240 [INSPIRE].

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • R. Gauld
    • 1
    Email author
  • A. Gehrmann-De Ridder
    • 1
    • 2
  • T. Gehrmann
    • 2
  • E.W.N. Glover
    • 3
  • A. Huss
    • 1
  1. 1.Institute for Theoretical Physics, ETHZürichSwitzerland
  2. 2.Department of PhysicsUniversity of ZürichZürichSwitzerland
  3. 3.Institute for Particle Physics PhenomenologyDurham UniversityDurhamU.K.

Personalised recommendations