Advertisement

Journal of High Energy Physics

, 2016:173 | Cite as

Neutrino mass from M theory SO(10)

  • Bobby S. Acharya
  • Krzysztof Bożek
  • Miguel Crispim RomãoEmail author
  • Stephen F. King
  • Chakrit Pongkitivanichkul
Open Access
Regular Article - Theoretical Physics

Abstract

We study the origin of neutrino mass from SO(10) arising from M Theory compactified on a G 2-manifold. This is linked to the problem of the breaking of the extra U(1) gauge group, in the SU(5) × U(1) subgroup of SO(10), which we show can achieved via a (generalised) Kolda-Martin mechanism. The resulting neutrino masses arise from a combination of the seesaw mechanism and induced R-parity breaking contributions. The rather complicated neutrino mass matrix is analysed for one neutrino family and it is shown how phenomenologically acceptable neutrino masses can emerge.

Keywords

GUT Neutrino Physics Compactification and String Models Supersymmetric Standard Model 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S.F. King, Models of neutrino mass, mixing and CP-violation, J. Phys. G 42 (2015) 123001 [arXiv:1510.02091] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    S.F. King, Neutrino mass models, Rept. Prog. Phys. 67 (2004) 107 [hep-ph/0310204] [INSPIRE].
  3. [3]
    G. Altarelli and F. Feruglio, Discrete flavor symmetries and models of neutrino mixing, Rev. Mod. Phys. 82 (2010) 2701 [arXiv:1002.0211] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    S.F. King and C. Luhn, Neutrino mass and mixing with discrete symmetry, Rept. Prog. Phys. 76 (2013) 056201 [arXiv:1301.1340] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    S.F. King, A. Merle, S. Morisi, Y. Shimizu and M. Tanimoto, Neutrino mass and mixing: from theory to experiment, New J. Phys. 16 (2014) 045018 [arXiv:1402.4271] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    P. Minkowski, μeγ at a rate of one out of 109 muon decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].
  7. [7]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, Conf. Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].Google Scholar
  8. [8]
    T. Yanagida, Horizontal symmetry and masses of neutrinos, Conf. Proc. C 7902131 (1979) 95 [INSPIRE].Google Scholar
  9. [9]
    R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    J. Schechter and J.W.F. Valle, Neutrino masses in SU(2) × U(1) theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].ADSGoogle Scholar
  11. [11]
    H. Fritzsch and P. Minkowski, Unified interactions of leptons and hadrons, Annals Phys. 93 (1975) 193 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    S.P. Martin, A supersymmetry primer, Adv. Ser. Direct. High Energy Phys. 18 (1998) 1 [Adv. Ser. Direct. High Energy Phys. 21 (2010) 1] [hep-ph/9709356] [INSPIRE].
  13. [13]
    E. Witten, String theory dynamics in various dimensions, Nucl. Phys. B 443 (1995) 85 [hep-th/9503124] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    P. Hořava and E. Witten, Heterotic and type-I string dynamics from eleven-dimensions, Nucl. Phys. B 460 (1996) 506 [hep-th/9510209] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  15. [15]
    B.S. Acharya, K. Bożek, M. Crispim Romão, S.F. King and C. Pongkitivanichkul, SO(10) grand unification in M-theory on a G 2 manifold, Phys. Rev. D 92 (2015) 055011 [arXiv:1502.01727] [INSPIRE].ADSGoogle Scholar
  16. [16]
    E. Witten, Deconstruction, G 2 holonomy and doublet triplet splitting, hep-ph/0201018 [INSPIRE].
  17. [17]
    B.S. Acharya, K. Bobkov, G.L. Kane, J. Shao and P. Kumar, The G 2 -MSSM: an M-theory motivated model of particle physics, Phys. Rev. D 78 (2008) 065038 [arXiv:0801.0478] [INSPIRE].ADSGoogle Scholar
  18. [18]
    B.S. Acharya, G. Kane, E. Kuflik and R. Lu, Theory and phenomenology of μ in M-theory, JHEP 05 (2011) 033 [arXiv:1102.0556] [INSPIRE].CrossRefzbMATHGoogle Scholar
  19. [19]
    C.F. Kolda and S.P. Martin, Low-energy supersymmetry with D term contributions to scalar masses, Phys. Rev. D 53 (1996) 3871 [hep-ph/9503445] [INSPIRE].
  20. [20]
    R. Barbier et al., R-parity violating supersymmetry, Phys. Rept. 420 (2005) 1 [hep-ph/0406039] [INSPIRE].
  21. [21]
    B.S. Acharya, K. Bobkov, G. Kane, P. Kumar and D. Vaman, An M-theory solution to the hierarchy problem, Phys. Rev. Lett. 97 (2006) 191601 [hep-th/0606262] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    R. Blumenhagen, M. Cvetič and T. Weigand, Spacetime instanton corrections in 4D string vacua: the seesaw mechanism for D-brane models, Nucl. Phys. B 771 (2007) 113 [hep-th/0609191] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    L.E. Ibáñez and A.M. Uranga, Neutrino Majorana masses from string theory instanton effects, JHEP 03 (2007) 052 [hep-th/0609213] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    M. Cvetič, R. Richter and T. Weigand, Computation of D-brane instanton induced superpotential couplings: Majorana masses from string theory, Phys. Rev. D 76 (2007) 086002 [hep-th/0703028] [INSPIRE].ADSMathSciNetGoogle Scholar
  25. [25]
    W. Buchmüller, K. Hamaguchi, O. Lebedev, S. Ramos-Sanchez and M. Ratz, Seesaw neutrinos from the heterotic string, Phys. Rev. Lett. 99 (2007) 021601 [hep-ph/0703078] [INSPIRE].
  26. [26]
    J.P. Conlon and D. Cremades, The neutrino suppression scale from large volumes, Phys. Rev. Lett. 99 (2007) 041803 [hep-ph/0611144] [INSPIRE].
  27. [27]
    A.E. Faraggi, ν τ mass as possible evidence for a superstring inspired standard like model, Phys. Lett. B 245 (1990) 435 [INSPIRE].
  28. [28]
    A.E. Faraggi and E. Halyo, Neutrino masses in superstring derived standard-like models, Phys. Lett. B 307 (1993) 311 [hep-th/9303060] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    C. Corianò and A.E. Faraggi, String inspired neutrino mass textures in light of KamLAND and WMAP, Phys. Lett. B 581 (2004) 99 [hep-ph/0306186] [INSPIRE].
  30. [30]
    D.M. Ghilencea, L.E. Ibáñez, N. Irges and F. Quevedo, TeV scale Z bosons from D-branes, JHEP 08 (2002) 016 [hep-ph/0205083] [INSPIRE].
  31. [31]
    B.S. Acharya and E. Witten, Chiral fermions from manifolds of G 2 holonomy, hep-th/0109152 [INSPIRE].
  32. [32]
    B.S. Acharya and S. Gukov, M theory and singularities of exceptional holonomy manifolds, Phys. Rept. 392 (2004) 121 [hep-th/0409191] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    B.S. Acharya, K. Bobkov, G.L. Kane, P. Kumar and J. Shao, Explaining the electroweak scale and stabilizing moduli in M-theory, Phys. Rev. D 76 (2007) 126010 [hep-th/0701034] [INSPIRE].ADSMathSciNetGoogle Scholar
  34. [34]
    B.S. Acharya and K. Bobkov, Kähler independence of the G 2 -MSSM, JHEP 09 (2010) 001 [arXiv:0810.3285] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    B.S. Acharya, G. Kane and P. Kumar, Compactified string theories — generic predictions for particle physics, Int. J. Mod. Phys. A 27 (2012) 1230012 [arXiv:1204.2795] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    G.F. Giudice and A. Masiero, A natural solution to the μ problem in supergravity theories, Phys. Lett. B 206 (1988) 480 [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    T. Banks, Y. Grossman, E. Nardi and Y. Nir, Supersymmetry without R-parity and without lepton number, Phys. Rev. D 52 (1995) 5319 [hep-ph/9505248] [INSPIRE].
  38. [38]
    H.K. Dreiner, An introduction to explicit R-parity violation, Pramana 51 (1997) 123 [Adv. Ser. Direct. High Energy Phys. 21 (2010) 565] [hep-ph/9707435] [INSPIRE].
  39. [39]
    B.S. Acharya, S.A.R. Ellis, G.L. Kane, B.D. Nelson and M.J. Perry, The lightest visible-sector supersymmetric particle is likely to be unstable, Phys. Rev. Lett. 117 (2016) 181802 [arXiv:1604.05320] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    L.J. Hall, R. Rattazzi and U. Sarid, The top quark mass in supersymmetric SO(10) unification, Phys. Rev. D 50 (1994) 7048 [hep-ph/9306309] [INSPIRE].
  41. [41]
    R. Rattazzi, U. Sarid and L.J. Hall, Yukawa unification: the good, the bad and the ugly, in Yukawa couplings and the origins of mass. Proceedings, 2nd IFT Workshop, Gainesville U.S.A. February 11-13 1994 [hep-ph/9405313] [INSPIRE].
  42. [42]
    H. Murayama, M. Olechowski and S. Pokorski, Viable t-b-τ Yukawa unification in SUSY SO(10), Phys. Lett. B 371 (1996) 57 [hep-ph/9510327] [INSPIRE].
  43. [43]
    H. Baer, M.A. Diaz, J. Ferrandis and X. Tata, Sparticle mass spectra from SO(10) grand unified models with Yukawa coupling unification, Phys. Rev. D 61 (2000) 111701 [hep-ph/9907211] [INSPIRE].
  44. [44]
    D. Auto, H. Baer, C. Balázs, A. Belyaev, J. Ferrandis and X. Tata, Yukawa coupling unification in supersymmetric models, JHEP 06 (2003) 023 [hep-ph/0302155] [INSPIRE].
  45. [45]
    H. Baer, S. Kraml and S. Sekmen, Is ‘just-so’ Higgs splitting needed for t-b-τ Yukawa unified SUSY GUTs?, JHEP 09 (2009) 005 [arXiv:0908.0134] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    A.S. Joshipura and K.M. Patel, Yukawa coupling unification in SO(10) with positive μ and a heavier gluino, Phys. Rev. D 86 (2012) 035019 [arXiv:1206.3910] [INSPIRE].ADSGoogle Scholar
  47. [47]
    M. Drees, Intermediate scale symmetry breaking and the spectrum of super partners in superstring inspired supergravity models, Phys. Lett. B 181 (1986) 279 [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    A. Brignole, L.E. Ibáñez and C. Muñoz, Soft supersymmetry breaking terms from supergravity and superstring models, Adv. Ser. Direct. High Energy Phys. 18 (1998) 125 [hep-ph/9707209] [INSPIRE].

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Bobby S. Acharya
    • 1
    • 2
  • Krzysztof Bożek
    • 1
  • Miguel Crispim Romão
    • 3
    Email author
  • Stephen F. King
    • 3
  • Chakrit Pongkitivanichkul
    • 1
  1. 1.Department of PhysicsKing’s CollegeLondonU.K.
  2. 2.International Centre for Theoretical PhysicsTriesteItaly
  3. 3.School of Physics and AstronomyUniversity of SouthamptonSouthamptonU.K.

Personalised recommendations