Advertisement

Journal of High Energy Physics

, 2016:168 | Cite as

Exceptional F (4) higher-spin theory in AdS6 at one-loop and other tests of duality

  • Murat Günaydin
  • Evgeny Skvortsov
  • Tung Tran
Open Access
Regular Article - Theoretical Physics

Abstract

We study the higher-spin gauge theory in six-dimensional anti-de Sitter space AdS6 that is based on the exceptional Lie superalgebra F (4). The relevant higher-spin algebra was constructed in arXiv:1409.2185. We determine the spectrum of the theory and show that it contains the physical fields of the Romans F (4) gauged supergravity. The full spectrum consists of an infinite tower of unitary supermultiplets of F (4) which extend the Romans multiplet to higher spins plus a single short supermultiplet.

Motivated by applications to this novel supersymmetric higher-spin theory as well as to other theories, we extend the known one-loop tests of AdS/CFT duality in various directions. The spectral zeta-function is derived for the most general case of fermionic and mixed-symmetry fields, which allows one to test the Type-A and B theories and supersymmetric extensions thereof in any dimension. We also study higher-spin doubletons and partially-massless fields. While most of the tests are successfully passed, the Type-B theory in all even dimensional anti-de Sitter spacetimes presents an interesting puzzle: the free energy as computed from the bulk is not equal to that of the free fermion on the CFT side, though there is some systematics to the discrepancy.

Keywords

AdS-CFT Correspondence Higher Spin Gravity Field Theories in Higher Dimensions Higher Spin Symmetry 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [INSPIRE].
  2. [2]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    E.S. Fradkin and M.A. Vasiliev, Cubic interaction in extended theories of massless higher spin fields, Nucl. Phys. B 291 (1987) 141 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    I.R. Klebanov and A.M. Polyakov, AdS dual of the critical O(N ) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    B. Sundborg, Stringy gravity, interacting tensionless strings and massless higher spins, Nucl. Phys. Proc. Suppl. 102 (2001) 113 [hep-th/0103247] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    E. Sezgin and P. Sundell, Massless higher spins and holography, Nucl. Phys. B 644 (2002) 303 [Erratum ibid. B 660 (2003) 403] [hep-th/0205131] [INSPIRE].
  8. [8]
    S. Fernando and M. Günaydin, Massless conformal fields, AdS d+1 /CFT d higher spin algebras and their deformations, Nucl. Phys. B 904 (2016) 494 [arXiv:1511.02167] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    E. Sezgin and P. Sundell, Holography in 4D (super) higher spin theories and a test via cubic scalar couplings, JHEP 07 (2005) 044 [hep-th/0305040] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    R.G. Leigh and A.C. Petkou, Holography of the \( \mathcal{N} \) = 1 higher spin theory on AdS 4, JHEP 06 (2003) 011 [hep-th/0304217] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    E.D. Skvortsov, On (un)broken higher-spin symmetry in vector models, arXiv:1512.05994 [INSPIRE].
  12. [12]
    J.-B. Bae, E. Joung and S. Lal, One-loop test of free SU(N ) adjoint model holography, JHEP 04 (2016) 061 [arXiv:1603.05387] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    J.-B. Bae, E. Joung and S. Lal, On the holography of free Yang-Mills, JHEP 10 (2016) 074 [arXiv:1607.07651] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    M. Günaydin, P. van Nieuwenhuizen and N.P. Warner, General construction of the unitary representations of anti-de Sitter superalgebras and the spectrum of the S 4 compactification of eleven-dimensional supergravity, Nucl. Phys. B 255 (1985) 63 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    M. Günaydin and N.P. Warner, Unitary supermultiplets of Osp(8/4, R) and the spectrum of the S 7 compactification of 11-dimensional supergravity, Nucl. Phys. B 272 (1986) 99 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    M. Günaydin and N. Marcus, The spectrum of the S 5 compactification of the chiral N = 2, D = 10 supergravity and the unitary supermultiplets of U(2,2/4), Class. Quant. Grav. 2 (1985) L11 [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    M. Flato and C. Fronsdal, One massless particle equals two Dirac singletons. VI: Elementary particles in a curved space, Lett. Math. Phys. 2 (1978) 421 [INSPIRE].
  18. [18]
    C. Fronsdal, The Dirac supermultiplet, Phys. Rev. D 26 (1982) 1988 [INSPIRE].ADSMathSciNetGoogle Scholar
  19. [19]
    M. Günaydin, Singleton and doubleton supermultiplets of space-time supergroups and infinite spin superalgebras, in Trieste Conference on Supermembranes and Physics in 2+1 Dimensions, Trieste Italy, 17-21 Jul 1989, M.J.Duff et.al. eds., World Scientific (1990), pp. 442-456 [INSPIRE].
  20. [20]
    E. Sezgin and P. Sundell, Towards massless higher spin extension of D = 5, N = 8 gauged supergravity, JHEP 09 (2001) 025 [hep-th/0107186] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    E. Sezgin and P. Sundell, Higher spin N = 8 supergravity in AdS 4, hep-th/9903020 [INSPIRE].
  22. [22]
    K. Govil and M. Günaydin, Deformed twistors and higher spin conformal (super-)algebras in six dimensions, JHEP 07 (2014) 004 [arXiv:1401.6930] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  23. [23]
    K. Govil and M. Günaydin, Deformed twistors and higher spin conformal (super-)algebras in four dimensions, JHEP 03 (2015) 026 [arXiv:1312.2907] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    S. Fernando and M. Günaydin, Minimal unitary representation of SU(2, 2) and its deformations as massless conformal fields and their supersymmetric extensions, J. Math. Phys. 51 (2010) 082301 [arXiv:0908.3624] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  25. [25]
    S. Fernando and M. Günaydin, Minimal unitary representation of SO ∗ (8) = SO(6, 2) and its SU(2) deformations as massless 6D conformal fields and their supersymmetric extensions, Nucl. Phys. B 841 (2010) 339 [arXiv:1005.3580] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  26. [26]
    S. Fernando and M. Günaydin, Minimal unitary representation of 5d superconformal algebra F (4) and AdS 6 /CFT 5 higher spin (super)-algebras, Nucl. Phys. B 890 (2014) 570 [arXiv:1409.2185] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  27. [27]
    V.G. Kac, Lie superalgebras, Adv. Math. 26 (1977) 8 [INSPIRE].zbMATHCrossRefGoogle Scholar
  28. [28]
    W. Nahm, Supersymmetries and their representations, Nucl. Phys. B 135 (1978) 149 [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    A. Salam and E. Sezgin eds., Supergravities in diverse dimensions, Vol. 1, 2, North-Holland/World Scientific (1989) [INSPIRE].
  30. [30]
    L.J. Romans, The F (4) gauged supergravity in six-dimensions, Nucl. Phys. B 269 (1986) 691 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    M. Cvetič, H. Lü and C.N. Pope, Gauged six-dimensional supergravity from massive type IIA, Phys. Rev. Lett. 83 (1999) 5226 [hep-th/9906221] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  32. [32]
    J. Jeong, Ö. Kelekci and E. Ó Colgain, An alternative IIB embedding of F(4) gauged supergravity, JHEP 05 (2013) 079 [arXiv:1302.2105] [INSPIRE].
  33. [33]
    S. Ferrara, A. Kehagias, H. Partouche and A. Zaffaroni, AdS 6 interpretation of 5D superconformal field theories, Phys. Lett. B 431 (1998) 57 [hep-th/9804006] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    A. Brandhuber and Y. Oz, The D4-D8 brane system and five-dimensional fixed points, Phys. Lett. B 460 (1999) 307 [hep-th/9905148] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  35. [35]
    M. Nishimura, Conformal supergravity from the AdS/CFT correspondence, Nucl. Phys. B 588 (2000) 471 [hep-th/0004179] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  36. [36]
    L.F. Alday, M. Fluder, C.M. Gregory, P. Richmond and J. Sparks, Supersymmetric gauge theories on squashed five-spheres and their gravity duals, JHEP 09 (2014) 067 [arXiv:1405.7194] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  37. [37]
    P. Karndumri, Gravity duals of 5D N = 2 SYM theory from F (4) gauged supergravity, Phys. Rev. D 90 (2014) 086009 [arXiv:1403.1150] [INSPIRE].ADSGoogle Scholar
  38. [38]
    M. Günaydin, K. Koepsell and H. Nicolai, Conformal and quasiconformal realizations of exceptional Lie groups, Commun. Math. Phys. 221 (2001) 57 [hep-th/0008063] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  39. [39]
    M. Günaydin and O. Pavlyk, A unified approach to the minimal unitary realizations of noncompact groups and supergroups, JHEP 09 (2006) 050 [hep-th/0604077] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  40. [40]
    M. Günaydin and O. Pavlyk, Generalized spacetimes defined by cubic forms and the minimal unitary realizations of their quasiconformal groups, JHEP 08 (2005) 101 [hep-th/0506010] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    C. Sleight and M. Taronna, Higher spin interactions from conformal field theory: the complete cubic couplings, Phys. Rev. Lett. 116 (2016) 181602 [arXiv:1603.00022] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    X. Bekaert, J. Erdmenger, D. Ponomarev and C. Sleight, Towards holographic higher-spin interactions: four-point functions and higher-spin exchange, JHEP 03 (2015) 170 [arXiv:1412.0016] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  43. [43]
    P. Kessel, G. Lucena Gómez, E. Skvortsov and M. Taronna, Higher spins and matter interacting in dimension three, JHEP 11 (2015) 104 [arXiv:1505.05887] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    X. Bekaert, J. Erdmenger, D. Ponomarev and C. Sleight, Quartic AdS interactions in higher-spin gravity from conformal field theory, JHEP 11 (2015) 149 [arXiv:1508.04292] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    N. Boulanger and P. Sundell, An action principle for Vasiliev’s four-dimensional higher-spin gravity, J. Phys. A 44 (2011) 495402 [arXiv:1102.2219] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  46. [46]
    R.G. Leigh, O. Parrikar and A.B. Weiss, Exact renormalization group and higher-spin holography, Phys. Rev. D 91 (2015) 026002 [arXiv:1407.4574] [INSPIRE].ADSMathSciNetGoogle Scholar
  47. [47]
    R. de Mello Koch, A. Jevicki, J.P. Rodrigues and J. Yoon, Canonical formulation of O(N ) vector/higher spin correspondence, J. Phys. A 48 (2015) 105403 [arXiv:1408.4800] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  48. [48]
    M.A. Vasiliev, Consistent equation for interacting gauge fields of all spins in (3+1)-dimensions, Phys. Lett. B 243 (1990) 378 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  49. [49]
    M.A. Vasiliev, Nonlinear equations for symmetric massless higher spin fields in (A)dS d, Phys. Lett. B 567 (2003) 139 [hep-th/0304049] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  50. [50]
    D. Ponomarev and A.A. Tseytlin, On quantum corrections in higher-spin theory in flat space, JHEP 05 (2016) 184 [arXiv:1603.06273] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  51. [51]
    S.E. Konshtein and M.A. Vasiliev, Massless representations and admissibility condition for higher spin superalgebras, Nucl. Phys. B 312 (1989) 402 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    M.A. Vasiliev, Higher spin superalgebras in any dimension and their representations, JHEP 12 (2004) 046 [hep-th/0404124] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    S. Giombi and I.R. Klebanov, One loop tests of higher spin AdS/CFT, JHEP 12 (2013) 068 [arXiv:1308.2337] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  54. [54]
    S. Giombi, I.R. Klebanov and B.R. Safdi, Higher spin AdS d+1 /CFT d at one loop, Phys. Rev. D 89 (2014) 084004 [arXiv:1401.0825] [INSPIRE].ADSGoogle Scholar
  55. [55]
    S. Giombi, I.R. Klebanov and A.A. Tseytlin, Partition functions and Casimir energies in higher spin AdS d+1 /CFT d, Phys. Rev. D 90 (2014) 024048 [arXiv:1402.5396] [INSPIRE].ADSGoogle Scholar
  56. [56]
    M. Beccaria and A.A. Tseytlin, Higher spins in AdS 5 at one loop: vacuum energy, boundary conformal anomalies and AdS/CFT, JHEP 11 (2014) 114 [arXiv:1410.3273] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    M. Beccaria, X. Bekaert and A.A. Tseytlin, Partition function of free conformal higher spin theory, JHEP 08 (2014) 113 [arXiv:1406.3542] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    M. Beccaria and A.A. Tseytlin, Vectorial AdS 5 /CFT 4 duality for spin-one boundary theory, J. Phys. A 47 (2014) 492001 [arXiv:1410.4457] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  59. [59]
    M. Beccaria, G. Macorini and A.A. Tseytlin, Supergravity one-loop corrections on AdS 7 and AdS 3 , higher spins and AdS/CFT, Nucl. Phys. B 892 (2015) 211 [arXiv:1412.0489] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  60. [60]
    M. Beccaria and A.A. Tseytlin, On higher spin partition functions, J. Phys. A 48 (2015) 275401 [arXiv:1503.08143] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  61. [61]
    M. Beccaria and A.A. Tseytlin, Iterating free-field AdS/CFT: higher spin partition function relations, J. Phys. A 49 (2016) 295401 [arXiv:1602.00948] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  62. [62]
    R.K. Gupta and S. Lal, Partition functions for higher-spin theories in AdS, JHEP 07 (2012) 071 [arXiv:1205.1130] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  63. [63]
    M.R. Gaberdiel, R. Gopakumar, T. Hartman and S. Raju, Partition functions of holographic minimal models, JHEP 08 (2011) 077 [arXiv:1106.1897] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  64. [64]
    J. Maldacena and A. Zhiboedov, Constraining conformal field theories with a higher spin symmetry, J. Phys. A 46 (2013) 214011 [arXiv:1112.1016] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  65. [65]
    V. Alba and K. Diab, Constraining conformal field theories with a higher spin symmetry in d = 4, arXiv:1307.8092 [INSPIRE].
  66. [66]
    N. Boulanger, D. Ponomarev, E.D. Skvortsov and M. Taronna, On the uniqueness of higher-spin symmetries in AdS and CFT, Int. J. Mod. Phys. A 28 (2013) 1350162 [arXiv:1305.5180] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  67. [67]
    Y.S. Stanev, Constraining conformal field theory with higher spin symmetry in four dimensions, Nucl. Phys. B 876 (2013) 651 [arXiv:1307.5209] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  68. [68]
    V. Alba and K. Diab, Constraining conformal field theories with a higher spin symmetry in d > 3 dimensions, JHEP 03 (2016) 044 [arXiv:1510.02535] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    E.S. Fradkin and M.A. Vasiliev, Candidate to the role of higher spin symmetry, Annals Phys. 177 (1987) 63 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  70. [70]
    F.A. Dolan, Character formulae and partition functions in higher dimensional conformal field theory, J. Math. Phys. 47 (2006) 062303 [hep-th/0508031] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  71. [71]
    C. Fronsdal, Massless fields with integer spin, Phys. Rev. D 18 (1978) 3624 [INSPIRE].ADSGoogle Scholar
  72. [72]
    K. Alkalaev, Mixed-symmetry tensor conserved currents and AdS/CFT correspondence, J. Phys. A 46 (2013) 214007 [arXiv:1207.1079] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  73. [73]
    K. Alkalaev, Massless hook field in AdS d+1 from the holographic perspective, JHEP 01 (2013) 018 [arXiv:1210.0217] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    R.R. Metsaev, Massless mixed-symmetry bosonic free fields in d-dimensional anti-de Sitter space-time, Phys. Lett. B 354 (1995) 78 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  75. [75]
    R.R. Metsaev, Arbitrary spin massless bosonic fields in d-dimensional anti-de Sitter space, Lect. Notes Phys. 524 (1999) 331 [hep-th/9810231] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  76. [76]
    J. Fang and C. Fronsdal, Massless fields with half integral spin, Phys. Rev. D 18 (1978) 3630 [INSPIRE].ADSGoogle Scholar
  77. [77]
    J. Fang and C. Fronsdal, Massless, half integer spin fields in de Sitter space, Phys. Rev. D 22 (1980) 1361 [INSPIRE].ADSMathSciNetGoogle Scholar
  78. [78]
    R.R. Metsaev, Fermionic fields in the d-dimensional anti-de Sitter space-time, Phys. Lett. B 419 (1998) 49 [hep-th/9802097] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  79. [79]
    O.V. Shaynkman, I.Y. Tipunin and M.A. Vasiliev, Unfolded form of conformal equations in M dimensions and o(M + 2) modules, Rev. Math. Phys. 18 (2006) 823 [hep-th/0401086] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  80. [80]
    R.R. Metsaev, All conformal invariant representations of d-dimensional anti-de Sitter group, Mod. Phys. Lett. A 10 (1995) 1719 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  81. [81]
    X. Bekaert and M. Grigoriev, Manifestly conformal descriptions and higher symmetries of bosonic singletons, SIGMA 6 (2010) 038 [arXiv:0907.3195] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  82. [82]
    S.E. Konstein and M.A. Vasiliev, Extended higher spin superalgebras and their massless representations, Nucl. Phys. B 331 (1990) 475 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  83. [83]
    K.B. Alkalaev, M. Grigoriev and E.D. Skvortsov, Uniformizing higher-spin equations, J. Phys. A 48 (2015) 015401 [arXiv:1409.6507] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  84. [84]
    C.-M. Chang, S. Minwalla, T. Sharma and X. Yin, ABJ triality: from higher spin fields to strings, J. Phys. A 46 (2013) 214009 [arXiv:1207.4485] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  85. [85]
    G. Lucena Gómez, Aspects of higher-spin theory with fermions, Ph.D. Thesis, Université Libre de Bruxelles (2014) [arXiv:1406.5319] [INSPIRE].
  86. [86]
    M. Günaydin, K. Koepsell and H. Nicolai, The minimal unitary representation of E 8(8), Adv. Theor. Math. Phys. 5 (2002) 923 [hep-th/0109005] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  87. [87]
    M.R. Gaberdiel and R. Gopakumar, Minimal model holography, J. Phys. A 46 (2013) 214002 [arXiv:1207.6697] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  88. [88]
    S. Banerjee, S. Hellerman, J. Maltz and S.H. Shenker, Light states in Chern-Simons theory coupled to fundamental matter, JHEP 03 (2013) 097 [arXiv:1207.4195] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  89. [89]
    H. Casini and M. Huerta, Entanglement entropy for the n-sphere, Phys. Lett. B 694 (2011) 167 [arXiv:1007.1813] [INSPIRE].ADSMathSciNetGoogle Scholar
  90. [90]
    I.L. Buchbinder, S.M. Kuzenko and A.G. Sibiryakov, Quantization of higher spin superfields in the anti-de Sitter superspace, Phys. Lett. B 352 (1995) 29 [hep-th/9502148] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  91. [91]
    J.S. Dowker and R. Critchley, Effective Lagrangian and energy momentum tensor in de Sitter space, Phys. Rev. D 13 (1976) 3224 [INSPIRE].ADSMathSciNetGoogle Scholar
  92. [92]
    S.W. Hawking, Zeta function regularization of path integrals in curved space-time, Commun. Math. Phys. 55 (1977) 133 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  93. [93]
    I.R. Klebanov, S.S. Pufu and B.R. Safdi, F -theorem without supersymmetry, JHEP 10 (2011) 038 [arXiv:1105.4598] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  94. [94]
    E.S. Fradkin and A.A. Tseytlin, Conformal supergravity, Phys. Rept. 119 (1985) 233 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  95. [95]
    A.A. Tseytlin, On partition function and Weyl anomaly of conformal higher spin fields, Nucl. Phys. B 877 (2013) 598 [arXiv:1309.0785] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  96. [96]
    S. Giombi, I.R. Klebanov, S.S. Pufu, B.R. Safdi and G. Tarnopolsky, AdS description of induced higher-spin gauge theory, JHEP 10 (2013) 016 [arXiv:1306.5242] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  97. [97]
    R. Camporesi and A. Higuchi, Stress energy tensors in anti-de Sitter space-time, Phys. Rev. D 45 (1992) 3591 [INSPIRE].ADSMathSciNetGoogle Scholar
  98. [98]
    R. Camporesi, The spinor heat kernel in maximally symmetric spaces, Commun. Math. Phys. 148 (1992) 283 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  99. [99]
    R. Camporesi and A. Higuchi, Arbitrary spin effective potentials in anti-de Sitter space-time, Phys. Rev. D 47 (1993) 3339 [INSPIRE].ADSMathSciNetGoogle Scholar
  100. [100]
    R. Camporesi and A. Higuchi, The Plancherel measure for p-forms in real hyperbolic spaces, J. Geom. Phys. 15 (1994) 57.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  101. [101]
    R. Camporesi and A. Higuchi, Spectral functions and zeta functions in hyperbolic spaces, J. Math. Phys. 35 (1994) 4217 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  102. [102]
    R. Camporesi and A. Higuchi, On the eigenfunctions of the Dirac operator on spheres and real hyperbolic spaces, J. Geom. Phys. 20 (1996) 1 [gr-qc/9505009] [INSPIRE].
  103. [103]
    R. Camporesi, Harmonic analysis and propagators on homogeneous spaces, Phys. Rept. 196 (1990) 1 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  104. [104]
    S. Lal, CFT 4 partition functions and the heat kernel on AdS 5, Phys. Lett. B 727 (2013) 325 [arXiv:1212.1050] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  105. [105]
    R. Gopakumar, R.K. Gupta and S. Lal, The heat kernel on AdS, JHEP 11 (2011) 010 [arXiv:1103.3627] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  106. [106]
    E.D. Skvortsov, Gauge fields in (A)dS d and connections of its symmetry algebra, J. Phys. A 42 (2009) 385401 [arXiv:0904.2919] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  107. [107]
    R. Aros and D.E. Diaz, Determinant and Weyl anomaly of Dirac operator: a holographic derivation, J. Phys. A 45 (2012) 125401 [arXiv:1111.1463] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  108. [108]
    S.S. Gubser and I.R. Klebanov, A universal result on central charges in the presence of double trace deformations, Nucl. Phys. B 656 (2003) 23 [hep-th/0212138] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  109. [109]
    D.E. Diaz and H. Dorn, Partition functions and double-trace deformations in AdS/CFT, JHEP 05 (2007) 046 [hep-th/0702163] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  110. [110]
    A.O. Barvinsky and D.V. Nesterov, Quantum effective action in spacetimes with branes and boundaries, Phys. Rev. D 73 (2006) 066012 [hep-th/0512291] [INSPIRE].ADSMathSciNetGoogle Scholar
  111. [111]
    A.Y. Segal, Conformal higher spin theory, Nucl. Phys. B 664 (2003) 59 [hep-th/0207212] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  112. [112]
    R. Camporesi, ζ-function regularization of one-loop effective potentials in anti-de Sitter spacetime, Phys. Rev. D 43 (1991) 3958 [INSPIRE].
  113. [113]
    N. Boulanger, D. Ponomarev and E.D. Skvortsov, Non-Abelian cubic vertices for higher-spin fields in AdS d, JHEP 05 (2013) 008 [arXiv:1211.6979] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  114. [114]
    N. Boulanger and E.D. Skvortsov, Higher-spin algebras and cubic interactions for simple mixed-symmetry fields in AdS spacetime, JHEP 09 (2011) 063 [arXiv:1107.5028] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  115. [115]
    N. Boulanger, E.D. Skvortsov and Y.M. Zinoviev, Gravitational cubic interactions for a simple mixed-symmetry gauge field in AdS and flat backgrounds, J. Phys. A 44 (2011) 415403 [arXiv:1107.1872] [INSPIRE].zbMATHGoogle Scholar
  116. [116]
    S. Giombi, I.R. Klebanov and Z.M. Tan, The ABC of higher-spin AdS/CFT, arXiv:1608.07611 [INSPIRE].
  117. [117]
    S. Giombi and I.R. Klebanov, Interpolating between a and F , JHEP 03 (2015) 117 [arXiv:1409.1937] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  118. [118]
    M.R. Gaberdiel and R. Gopakumar, Large \( \mathcal{N} \) = 4 holography, JHEP 09 (2013) 036 [arXiv:1305.4181] [INSPIRE].ADSCrossRefGoogle Scholar
  119. [119]
    M. Günaydin, The exceptional superspace and the quadratic Jordan formulation of quantum mechanics, in Elementary particles and the universe: essays in honor of Murray Gell-Mann, J.H. Schwarz ed., Cambridge University Press, Cambridge U.K. (1989), pp. 99-119 [INSPIRE].
  120. [120]
    M. Günaydin, On an exceptional nonassociative superspace, J. Math. Phys. 31 (1990) 1776 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  121. [121]
    E. Bergshoeff et al., Superconformal N = 2, D = 5 matter with and without actions, JHEP 10 (2002) 045 [hep-th/0205230] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  122. [122]
    E. Bergshoeff et al., Weyl multiplets of N = 2 conformal supergravity in five-dimensions, JHEP 06 (2001) 051 [hep-th/0104113] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  123. [123]
    M. Ozkan, Off-shell \( \mathcal{N} \) = 2 linear multiplets in five dimensions, arXiv:1608.00349 [INSPIRE].
  124. [124]
    T. Basile, X. Bekaert and N. Boulanger, Flato-Fronsdal theorem for higher-order singletons, JHEP 11 (2014) 131 [arXiv:1410.7668] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  125. [125]
    S. Giombi et al., Chern-Simons theory with vector fermion matter, Eur. Phys. J. C 72 (2012) 2112 [arXiv:1110.4386] [INSPIRE].ADSCrossRefGoogle Scholar
  126. [126]
    S. Deser and A. Waldron, Partial masslessness of higher spins in (A)dS, Nucl. Phys. B 607 (2001) 577 [hep-th/0103198] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  127. [127]
    G.W. Gibbons, M.J. Perry and C.N. Pope, Partition functions, the Bekenstein bound and temperature inversion in anti-de Sitter space and its conformal boundary, Phys. Rev. D 74 (2006) 084009 [hep-th/0606186] [INSPIRE].ADSMathSciNetGoogle Scholar
  128. [128]
    M. Özcan, Casimir energy density for spherical universes in n-dimensional spacetime, Class. Quant. Grav. 23 (2006) 5531 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  129. [129]
    A. Zhiboedov, A note on three-point functions of conserved currents, arXiv:1206.6370 [INSPIRE].
  130. [130]
    M.S. Costa, J. Penedones, D. Poland and S. Rychkov, Spinning conformal correlators, JHEP 11 (2011) 071 [arXiv:1107.3554] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  131. [131]
    R.R. Metsaev, Generating function for cubic interaction vertices of higher spin fields in any dimension, Mod. Phys. Lett. A 8 (1993) 2413 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  132. [132]
    R.R. Metsaev, Cubic interaction vertices of massive and massless higher spin fields, Nucl. Phys. B 759 (2006) 147 [hep-th/0512342] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  133. [133]
    O.A. Gelfond, E.D. Skvortsov and M.A. Vasiliev, Higher spin conformal currents in Minkowski space, Theor. Math. Phys. 154 (2008) 294 [hep-th/0601106] [INSPIRE].zbMATHCrossRefGoogle Scholar
  134. [134]
    E.S. Fradkin and V.Y. Linetsky, Cubic interaction in conformal theory of integer higher spin fields in four-dimensional space-time, Phys. Lett. B 231 (1989) 97 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  135. [135]
    R. Manvelyan, K. Mkrtchyan, R. Mkrtchyan and S. Theisen, On higher spin symmetries in AdS 5, JHEP 10 (2013) 185 [arXiv:1304.7988] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  136. [136]
    L. Dolan, C.R. Nappi and E. Witten, Conformal operators for partially massless states, JHEP 10 (2001) 016 [hep-th/0109096] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  137. [137]
    X. Bekaert and M. Grigoriev, Higher order singletons, partially massless fields and their boundary values in the ambient approach, Nucl. Phys. B 876 (2013) 667 [arXiv:1305.0162] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  138. [138]
    E.D. Skvortsov and M.A. Vasiliev, Geometric formulation for partially massless fields, Nucl. Phys. B 756 (2006) 117 [hep-th/0601095] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  139. [139]
    M.A. Vasiliev, Higher spin algebras and quantization on the sphere and hyperboloid, Int. J. Mod. Phys. A 6 (1991) 1115 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  140. [140]
    B.L. Feigin, The Lie algebras gl(λ) and cohomologies of Lie algebras of differential operators, Russ. Math. Surv. 43 (1988) 169.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Institute for Gravitation and the Cosmos Physics DepartmentPennsylvania State UniversityUniversity ParkU.S.A.
  2. 2.Arnold Sommerfeld Center for Theoretical PhysicsLudwig-Maximilians University MunichMunichGermany
  3. 3.Lebedev Institute of PhysicsMoscowRussia
  4. 4.Department of PhysicsBrown UniversityProvidenceU.S.A.

Personalised recommendations