Advertisement

Journal of High Energy Physics

, 2016:149 | Cite as

On the one loop \( {\gamma}^{\left(\ast \right)}\to q\overline{q} \) impact factor and the exclusive diffractive cross sections for the production of two or three jets

  • R. Boussarie
  • A. V. Grabovsky
  • L. Szymanowski
  • S. WallonEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

We present the calculation of the impact factor for the \( {\gamma}^{\left(\ast \right)}\to q\overline{q} \) transition with one loop accuracy in arbitrary kinematics. The calculation was done within Balitsky’s high energy operator expansion. Together with our previous result for the \( {\gamma}^{\left(\ast \right)}\to q\overline{q}g \) Born impact factor it allows one to derive cross sections for 2- (one loop) and 3-jet (Born) difractive electroproduction. We write such cross sections for the 2 and 3 jet exclusive diffractive electroproduction off a proton in terms of hadronic matrix elements of Wilson lines. For the 2-jet cross section we demonstrate the cancellation of infrared, collinear and rapidity singularities. Our result can be directly exploited to describe the recently analyzed data on exclusive dijet production at HERA and used for the study of jet photoproduction in ultraperipheral proton or nuclear scattering.

Keywords

Jets NLO Computations 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M. Wusthoff and A.D. Martin, The QCD description of diffractive processes, J. Phys. G 25 (1999) R309 [hep-ph/9909362] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    G. Wolf, Review of High Energy Diffraction in Real and Virtual Photon Proton scattering at HERA, Rept. Prog. Phys. 73 (2010) 116202 [arXiv:0907.1217] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    H1 collaboration, A. Aktas et al., Diffractive deep-inelastic scattering with a leading proton at HERA, Eur. Phys. J. C 48 (2006) 749 [hep-ex/0606003] [INSPIRE].
  4. [4]
    H1 collaboration, A. Aktas et al., Measurement and QCD analysis of the diffractive deep-inelastic scattering cross-section at HERA, Eur. Phys. J. C 48 (2006) 715 [hep-ex/0606004] [INSPIRE].
  5. [5]
    ZEUS collaboration, S. Chekanov et al., Dissociation of virtual photons in events with a leading proton at HERA, Eur. Phys. J. C 38 (2004) 43 [hep-ex/0408009] [INSPIRE].
  6. [6]
    ZEUS collaboration, S. Chekanov et al., Study of deep inelastic inclusive and diffractive scattering with the ZEUS forward plug calorimeter, Nucl. Phys. B 713 (2005) 3 [hep-ex/0501060] [INSPIRE].
  7. [7]
    F.D. Aaron et al., Measurement of the cross section for diffractive deep-inelastic scattering with a leading proton at HERA, Eur. Phys. J. C 71 (2011) 1578 [arXiv:1010.1476] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    H1 collaboration, F.D. Aaron et al., Inclusive Measurement of Diffractive Deep-Inelastic Scattering at HERA, Eur. Phys. J. C 72 (2012) 2074 [arXiv:1203.4495] [INSPIRE].
  9. [9]
    ZEUS collaboration, S. Chekanov et al., Deep inelastic scattering with leading protons or large rapidity gaps at HERA, Nucl. Phys. B 816 (2009) 1 [arXiv:0812.2003] [INSPIRE].
  10. [10]
    ZEUS and H1 collaborations, F.D. Aaron et al., Combined inclusive diffractive cross sections measured with forward proton spectrometers in deep inelastic ep scattering at HERA, Eur. Phys. J. C 72 (2012) 2175 [arXiv:1207.4864] [INSPIRE].
  11. [11]
    J.C. Collins, Proof of factorization for diffractive hard scattering, Phys. Rev. D 57 (1998) 3051 [Erratum ibid. D 61 (2000) 019902] [hep-ph/9709499] [INSPIRE].
  12. [12]
    J. Bartels, J.R. Ellis, H. Kowalski and M. Wusthoff, An analysis of diffraction in deep inelastic scattering, Eur. Phys. J. C 7 (1999) 443 [hep-ph/9803497] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    M. Wusthoff, Photon diffractive dissociation in deep inelastic scattering, Ph.D. Thesis (1995), DESY-95-166, [INSPIRE].
  14. [14]
    E. Gotsman, E. Levin and U. Maor, Diffractive leptoproduction of small masses in QCD, Nucl. Phys. B 493 (1997) 354 [hep-ph/9606280] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    M. Wusthoff, Large rapidity gap events in deep inelastic scattering, Phys. Rev. D 56 (1997) 4311 [hep-ph/9702201] [INSPIRE].ADSGoogle Scholar
  16. [16]
    J. Bartels, H. Jung and M. Wusthoff, Quark-anti-quark gluon jets in DIS diffractive dissociation, Eur. Phys. J. C 11 (1999) 111 [hep-ph/9903265] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    J. Bartels, H. Jung and A. Kyrieleis, Massive \( c\overline{c}g \) : Calculation in diffractive DIS and diffractive D* production at HERA, Eur. Phys. J. C 24 (2002) 555 [hep-ph/0204269] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    C. Marquet, A unified description of diffractive deep inelastic scattering with saturation, Phys. Rev. D 76 (2007) 094017 [arXiv:0706.2682] [INSPIRE].ADSGoogle Scholar
  19. [19]
    R. Boussarie, A.V. Grabovsky, L. Szymanowski and S. Wallon, Impact factor for high-energy two and three jets diffractive production, JHEP 09 (2014) 026 [arXiv:1405.7676] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    I. Balitsky, Operator expansion for high-energy scattering, Nucl. Phys. B 463 (1996) 99 [hep-ph/9509348] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    I. Balitsky, Factorization for high-energy scattering, Phys. Rev. Lett. 81 (1998) 2024 [hep-ph/9807434] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    I. Balitsky, Factorization and high-energy effective action, Phys. Rev. D 60 (1999) 014020 [hep-ph/9812311] [INSPIRE].ADSGoogle Scholar
  23. [23]
    I. Balitsky, Effective field theory for the small-x evolution, Phys. Lett. B 518 (2001) 235 [hep-ph/0105334] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  24. [24]
    J. Jalilian-Marian, A. Kovner, A. Leonidov and H. Weigert, The BFKL equation from the Wilson renormalization group, Nucl. Phys. B 504 (1997) 415 [hep-ph/9701284] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    J. Jalilian-Marian, A. Kovner, A. Leonidov and H. Weigert, The Wilson renormalization group for low x physics: Towards the high density regime, Phys. Rev. D 59 (1998) 014014 [hep-ph/9706377] [INSPIRE].ADSGoogle Scholar
  26. [26]
    J. Jalilian-Marian, A. Kovner and H. Weigert, The Wilson renormalization group for low x physics: Gluon evolution at finite parton density, Phys. Rev. D 59 (1998) 014015 [hep-ph/9709432] [INSPIRE].ADSGoogle Scholar
  27. [27]
    J. Jalilian-Marian, A. Kovner, A. Leonidov and H. Weigert, Unitarization of gluon distribution in the doubly logarithmic regime at high density, Phys. Rev. D 59 (1999) 034007 [Erratum ibid. D 59 (1999) 099903] [hep-ph/9807462] [INSPIRE].
  28. [28]
    A. Kovner, J.G. Milhano and H. Weigert, Relating different approaches to nonlinear QCD evolution at finite gluon density, Phys. Rev. D 62 (2000) 114005 [hep-ph/0004014] [INSPIRE].ADSGoogle Scholar
  29. [29]
    H. Weigert, Unitarity at small Bjorken x, Nucl. Phys. A 703 (2002) 823 [hep-ph/0004044] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    E. Iancu, A. Leonidov and L.D. McLerran, Nonlinear gluon evolution in the color glass condensate. 1., Nucl. Phys. A 692 (2001) 583 [hep-ph/0011241] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  31. [31]
    E. Iancu, A. Leonidov and L.D. McLerran, The renormalization group equation for the color glass condensate, Phys. Lett. B 510 (2001) 133 [hep-ph/0102009] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  32. [32]
    E. Ferreiro, E. Iancu, A. Leonidov and L. McLerran, Nonlinear gluon evolution in the color glass condensate. 2., Nucl. Phys. A 703 (2002) 489 [hep-ph/0109115] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  33. [33]
    R. Boussarie, A.V. Grabovsky, L. Szymanowski and S. Wallon, Diffractive production of jets at high-energy in the QCD shock-wave approach, in proceedings of Photon 2015: International Conference on the Structure and Interactions of the Photon and the 21th International Workshop on Photon-Photon Collisions and International Workshop on High Energy Photon Linear Colliders Novosibirsk, Russia, June 15–19, 2015, arXiv:1511.02785 [INSPIRE].
  34. [34]
    R. Boussarie, A.V. Grabovsky, L. Szymanowski and S. Wallon, Photon dissociation into two and three jets: initial and final state corrections, Acta Phys. Polon. Supp. 8 (2015) 897 [arXiv:1512.00774] [INSPIRE].CrossRefGoogle Scholar
  35. [35]
    V.S. Fadin, E.A. Kuraev and L.N. Lipatov, On the Pomeranchuk Singularity in Asymptotically Free Theories, Phys. Lett. B 60 (1975) 50 [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    E.A. Kuraev, L.N. Lipatov and V.S. Fadin, Multi-Reggeon Processes in the Yang-Mills Theory, Sov. Phys. JETP 44 (1976) 443 [INSPIRE].ADSGoogle Scholar
  37. [37]
    E.A. Kuraev, L.N. Lipatov and V.S. Fadin, The Pomeranchuk Singularity in Nonabelian Gauge Theories, Sov. Phys. JETP 45 (1977) 199 [INSPIRE].ADSMathSciNetGoogle Scholar
  38. [38]
    I.I. Balitsky and L.N. Lipatov, The Pomeranchuk Singularity in Quantum Chromodynamics, Sov. J. Nucl. Phys. 28 (1978) 822 [INSPIRE].Google Scholar
  39. [39]
    V.S. Fadin and L.N. Lipatov, BFKL Pomeron in the next-to-leading approximation, Phys. Lett. B 429 (1998) 127 [hep-ph/9802290] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    M. Ciafaloni and G. Camici, Energy scale(s) and next-to-leading BFKL equation, Phys. Lett. B 430 (1998) 349 [hep-ph/9803389] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    V.S. Fadin and R. Fiore, Non-forward BFKL Pomeron at next-to-leading order, Phys. Lett. B 610 (2005) 61 [Erratum ibid. B 621 (2005) 320] [hep-ph/0412386] [INSPIRE].
  42. [42]
    V.S. Fadin and R. Fiore, Non-forward NLO BFKL kernel, Phys. Rev. D 72 (2005) 014018 [hep-ph/0502045] [INSPIRE].ADSGoogle Scholar
  43. [43]
    Y.V. Kovchegov, Small-x F 2 structure function of a nucleus including multiple Pomeron exchanges, Phys. Rev. D 60 (1999) 034008 [hep-ph/9901281] [INSPIRE].ADSGoogle Scholar
  44. [44]
    Y.V. Kovchegov, Unitarization of the BFKL Pomeron on a nucleus, Phys. Rev. D 61 (2000) 074018 [hep-ph/9905214] [INSPIRE].ADSGoogle Scholar
  45. [45]
    K.J. Golec-Biernat and M. Wusthoff, Saturation effects in deep inelastic scattering at low Q 2 and its implications on diffraction, Phys. Rev. D 59 (1998) 014017 [hep-ph/9807513] [INSPIRE].ADSGoogle Scholar
  46. [46]
    K.J. Golec-Biernat and M. Wusthoff, Saturation in diffractive deep inelastic scattering, Phys. Rev. D 60 (1999) 114023 [hep-ph/9903358] [INSPIRE].ADSGoogle Scholar
  47. [47]
    G.A. Chirilli and Y.V. Kovchegov, Solution of the NLO BFKL Equation and a Strategy for Solving the All-Order BFKL Equation, JHEP 06 (2013) 055 [arXiv:1305.1924] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    A.V. Grabovsky, On the solution to the NLO forward BFKL equation, JHEP 09 (2013) 098 [arXiv:1307.3152] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    ZEUS collaboration, H. Abramowicz et al., Production of exclusive dijets in diffractive deep inelastic scattering at HERA, Eur. Phys. J. C 76 (2016) 16 [arXiv:1505.05783] [INSPIRE].
  50. [50]
    S. Caron-Huot, When does the gluon reggeize?, JHEP 05 (2015) 093 [arXiv:1309.6521] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    V.S. Fadin, R. Fiore, A.V. Grabovsky and A. Papa, Connection between complete and Moebius forms of gauge invariant operators, Nucl. Phys. B 856 (2012) 111 [arXiv:1109.6634] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. [52]
    C. Marquet and H. Weigert, New observables to test the Color Glass Condensate beyond the large-N c limit, Nucl. Phys. A 843 (2010) 68 [arXiv:1003.0813] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    D. Yu. Ivanov and A. Papa, The next-to-leading order forward jet vertex in the small-cone approximation, JHEP 05 (2012) 086 [arXiv:1202.1082] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    B.L. Ioffe, V.S. Fadin and L.N. Lipatov, Quantum chromodynamics: Perturbative and nonperturbative aspects, volume 30. Cambridge University Press, (2010).Google Scholar
  55. [55]
    I. Balitsky and G.A. Chirilli, Photon impact factor in the next-to-leading order, Phys. Rev. D 83 (2011) 031502 [arXiv:1009.4729] [INSPIRE].ADSGoogle Scholar
  56. [56]
    I. Balitsky and G.A. Chirilli, Photon impact factor and k T -factorization for DIS in the next-to-leading order, Phys. Rev. D 87 (2013) 014013 [arXiv:1207.3844] [INSPIRE].ADSGoogle Scholar
  57. [57]
    D. Yu. Ivanov, M.I. Kotsky and A. Papa, The impact factor for the virtual photon to light vector meson transition, Eur. Phys. J. C 38 (2004) 195 [hep-ph/0405297] [INSPIRE].
  58. [58]
    I.V. Anikin, D. Yu. Ivanov, B. Pire, L. Szymanowski and S. Wallon, On the description of exclusive processes beyond the leading twist approximation, Phys. Lett. B 682 (2010) 413 [arXiv:0903.4797] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  59. [59]
    I.V. Anikin, D. Yu. Ivanov, B. Pire, L. Szymanowski and S. Wallon, QCD factorization of exclusive processes beyond leading twist: γ T* → ρ T impact factor with twist three accuracy, Nucl. Phys. B 828 (2010) 1 [arXiv:0909.4090] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  60. [60]
    S. Wandzura and F. Wilczek, Sum Rules for Spin Dependent Electroproduction: Test of Relativistic Constituent Quarks, Phys. Lett. B 72 (1977) 195 [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    H1 collaboration, A. Aktas et al., Diffractive open charm production in deep-inelastic scattering and photoproduction at HERA, Eur. Phys. J. C 50 (2007) 1 [hep-ex/0610076] [INSPIRE].
  62. [62]
    F. Dominguez, C. Marquet, B.-W. Xiao and F. Yuan, Universality of Unintegrated Gluon Distributions at small x, Phys. Rev. D 83 (2011) 105005 [arXiv:1101.0715] [INSPIRE].ADSGoogle Scholar
  63. [63]
    A.V. Grabovsky, On the low-x NLO evolution of 4 point colorless operators, JHEP 09 (2015) 194 [arXiv:1507.08622] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  64. [64]
    D. Colferai, F. Schwennsen, L. Szymanowski and S. Wallon, Mueller Navelet jets at LHC — complete NLL BFKL calculation, JHEP 12 (2010) 026 [arXiv:1002.1365] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    B. Ducloué, L. Szymanowski and S. Wallon, Confronting Mueller-Navelet jets in NLL BFKL with LHC experiments at 7 TeV, JHEP 05 (2013) 096 [arXiv:1302.7012] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    F. Caporale, D. Yu. Ivanov, B. Murdaca and A. Papa, Mueller-Navelet small-cone jets at LHC in next-to-leading BFKL, Nucl. Phys. B 877 (2013) 73 [arXiv:1211.7225] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  67. [67]
    F. Caporale, B. Murdaca, A. Sabio Vera and C. Salas, Scale choice and collinear contributions to Mueller-Navelet jets at LHC energies, Nucl. Phys. B 875 (2013) 134 [arXiv:1305.4620] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    F. Caporale, D. Yu. Ivanov, B. Murdaca and A. Papa, Brodsky-Lepage-Mackenzie optimal renormalization scale setting for semihard processes, Phys. Rev. D 91 (2015) 114009 [arXiv:1504.06471] [INSPIRE].ADSGoogle Scholar
  69. [69]
    F.G. Celiberto, D. Yu. Ivanov, B. Murdaca and A. Papa, Mueller-Navelet Jets at LHC: BFKL Versus High-Energy DGLAP, Eur. Phys. J. C 75 (2015) 292 [arXiv:1504.08233] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    A.H. Mueller and H. Navelet, An Inclusive Minijet Cross-Section and the Bare Pomeron in QCD, Nucl. Phys. B 282 (1987) 727 [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    CMS collaboration, Azimuthal decorrelation of jets widely separated in rapidity in pp collisions at \( \sqrt{s}=7 \) TeV, Submitted to: JHEP (2016) [arXiv:1601.06713] [INSPIRE].
  72. [72]
    B. Ducloué, L. Szymanowski and S. Wallon, Evidence for high-energy resummation effects in Mueller-Navelet jets at the LHC, Phys. Rev. Lett. 112 (2014) 082003 [arXiv:1309.3229] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    F. Caporale, D. Yu. Ivanov, B. Murdaca and A. Papa, Mueller-Navelet jets in next-to-leading order BFKL: theory versus experiment, Eur. Phys. J. C 74 (2014) 3084 [Erratum ibid. C 75 (2015) 535] [arXiv:1407.8431] [INSPIRE].
  74. [74]
    H1 collaboration, F.D. Aaron et al., Measurement of Dijet Production in Diffractive Deep-Inelastic Scattering with a Leading Proton at HERA, Eur. Phys. J. C 72 (2012) 1970 [arXiv:1111.0584] [INSPIRE].
  75. [75]
    ZEUS collaboration, S. Chekanov et al., Diffractive photoproduction of dijets in ep collisions at HERA, Eur. Phys. J. C 55 (2008) 177 [arXiv:0710.1498] [INSPIRE].
  76. [76]
    H1 collaboration, F.D. Aaron et al., Diffractive Dijet Photoproduction in ep Collisions at HERA, Eur. Phys. J. C 70 (2010) 15 [arXiv:1006.0946] [INSPIRE].
  77. [77]
    M. Klasen and G. Kramer, Factorization breaking in diffractive dijet photoproduction, Eur. Phys. J. C 38 (2004) 93 [hep-ph/0408203] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    M. Klasen and G. Kramer, Review of factorization breaking in diffractive photoproduction of dijets, Mod. Phys. Lett. A 23 (2008) 1885 [arXiv:0806.2269] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    D. Boer et al., Gluons and the quark sea at high energies: Distributions, polarization, tomography, arXiv:1108.1713 [INSPIRE].
  80. [80]
    LHeC Study Group collaboration, J.L. Abelleira Fernandez et al., A Large Hadron Electron Collider at CERN: Report on the Physics and Design Concepts for Machine and Detector, J. Phys. G 39 (2012) 075001 [arXiv:1206.2913] [INSPIRE].
  81. [81]
    T. Altinoluk, N. Armesto, G. Beuf and A.H. Rezaeian, Diffractive Dijet Production in Deep Inelastic Scattering and Photon-Hadron Collisions in the Color Glass Condensate, Phys. Lett. B 758 (2016) 373 [arXiv:1511.07452] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    Y. Hatta, B.-W. Xiao and F. Yuan, Probing the Small-x Gluon Tomography in Correlated Hard Diffractive Dijet Production in Deep Inelastic Scattering, Phys. Rev. Lett. 116 (2016) 202301 [arXiv:1601.01585] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    LHCb collaboration, Exclusive J/ψ and ψ(2S) production in pp collisions at \( \sqrt{s}=7 \) TeV, J. Phys. G 40 (2013) 045001 [arXiv:1301.7084] [INSPIRE].
  84. [84]
    LHCb collaboration, Updated measurements of exclusive J/ψ and ψ(2S) production cross-sections in pp collisions at \( \sqrt{s}=7 \) TeV, J. Phys. G 41 (2014) 055002 [arXiv:1401.3288] [INSPIRE].
  85. [85]
    LHCb collaboration, Measurement of the exclusive Y production cross-section in pp collisions at \( \sqrt{s}=7 \) TeV and 8 TeV, JHEP 09 (2015) 084 [arXiv:1505.08139] [INSPIRE].
  86. [86]
    ALICE collaboration, Exclusive J/ψ photoproduction off protons in ultra-peripheral p-Pb collisions at \( \sqrt{s_{\mathrm{NN}}}=5.02 \) TeV, Phys. Rev. Lett. 113 (2014) 232504 [arXiv:1406.7819] [INSPIRE].
  87. [87]
    ALICE collaboration, Charmonium and e + e pair photoproduction at mid-rapidity in ultra-peripheral Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}}=2.76 \) TeV, Eur. Phys. J. C 73 (2013) 2617 [arXiv:1305.1467] [INSPIRE].
  88. [88]
    ALICE collaboration, Coherent J/ψ photoproduction in ultra-peripheral Pb-Pb collisions at \( \sqrt{s_{NN}}=2.76 \) TeV, Phys. Lett. B 718 (2013) 1273 [arXiv:1209.3715] [INSPIRE].
  89. [89]
    ALICE collaboration, Coherent ψ(2S) photo-production in ultra-peripheral Pb Pb collisions at \( \sqrt{s_{\mathrm{NN}}}=2.76 \) TeV, Phys. Lett. B 751 (2015) 358 [arXiv:1508.05076] [INSPIRE].
  90. [90]
    CMS collaboration, Coherent J/Psi photoproduction in ultra-peripheral PbPb collisions at \( \sqrt{s_{NN}}=2.76 \) TeV with the CMS experiment, [arXiv:1605.06966] [INSPIRE].
  91. [91]
    LHC Forward Physics Working Group collaboration, K. Akiba et al., LHC Forward Physics, CERN-PH-LPCC-2015-001, SLAC-PUB-16364, DESY-15-167 (2015).Google Scholar
  92. [92]
    V. Guzey and M. Klasen, Diffractive dijet photoproduction in ultraperipheral collisions at the LHC in next-to-leading order QCD, JHEP 04 (2016) 158 [arXiv:1603.06055] [INSPIRE].ADSCrossRefGoogle Scholar
  93. [93]
    G. Beuf, Dipole factorization for DIS at NLO I: Loop correction to the photon to quark-antiquark light-front wave-functions, arXiv:1606.00777 [INSPIRE].
  94. [94]
    G. Beuf, NLO corrections for the dipole factorization of DIS structure functions at low x, Phys. Rev. D 85 (2012) 034039 [arXiv:1112.4501] [INSPIRE].ADSGoogle Scholar
  95. [95]
    A.V. Bogdan and A.V. Grabovsky, Radiative corrections to the Reggeized quark-Reggeized quark-gluon effective vertex, Nucl. Phys. B 773 (2007) 65 [hep-ph/0701144] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • R. Boussarie
    • 1
  • A. V. Grabovsky
    • 2
    • 3
    • 4
  • L. Szymanowski
    • 5
  • S. Wallon
    • 1
    • 6
    Email author
  1. 1.Laboratoire de Physique Théorique, UMR 8627, CNRS, Univ. Paris-Sud, CNRS, Université Paris-SaclayOrsayFrance
  2. 2.Budker Institute of Nuclear PhysicsNovosibirskRussia
  3. 3.Novosibirsk State UniversityNovosibirskRussia
  4. 4.Department of PhysicsUniversity of MinnesotaDuluthU.S.A.
  5. 5.National Centre for Nuclear Research (NCBJ)WarsawPoland
  6. 6.UPMC Univ. Paris 06, faculté de physiqueParis Cedex 05France

Personalised recommendations