Journal of High Energy Physics

, 2016:146 | Cite as

Renormalisation group corrections to neutrino mixing sum rules

  • J. Gehrlein
  • S. T. Petcov
  • M. Spinrath
  • A. V. Titov
Open Access
Regular Article - Theoretical Physics


Neutrino mixing sum rules are common to a large class of models based on the (discrete) symmetry approach to lepton flavour. In this approach the neutrino mixing matrix U is assumed to have an underlying approximate symmetry form Ũν, which is dictated by, or associated with, the employed (discrete) symmetry. In such a setup the cosine of the Dirac CP-violating phase δ can be related to the three neutrino mixing angles in terms of a sum rule which depends on the symmetry form of Ũν. We consider five extensively discussed possible symmetry forms of Ũν: i) bimaximal (BM) and ii) tri-bimaximal (TBM) forms, the forms corresponding to iii) golden ratio type A (GRA) mixing, iv) golden ratio type B (GRB) mixing, and v) hexagonal (HG) mixing. For each of these forms we investigate the renormalisation group corrections to the sum rule predictions for δ in the cases of neutrino Majorana mass term generated by the Weinberg (dimension 5) operator added to i) the Standard Model, and ii) the minimal SUSY extension of the Standard Model.


CP violation Neutrino Physics Renormalization Group Discrete Symmetries 


  1. [1]
    H. Ishimori, T. Kobayashi, H. Ohki, Y. Shimizu, H. Okada and M. Tanimoto, Non-Abelian Discrete Symmetries in Particle Physics, Prog. Theor. Phys. Suppl. 183 (2010) 1 [arXiv:1003.3552] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  2. [2]
    G. Altarelli and F. Feruglio, Discrete Flavor Symmetries and Models of Neutrino Mixing, Rev. Mod. Phys. 82 (2010) 2701 [arXiv:1002.0211] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    S.F. King and C. Luhn, Neutrino Mass and Mixing with Discrete Symmetry, Rept. Prog. Phys. 76 (2013) 056201 [arXiv:1301.1340] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    S.F. King, A. Merle, S. Morisi, Y. Shimizu and M. Tanimoto, Neutrino Mass and Mixing: from Theory to Experiment, New J. Phys. 16 (2014) 045018 [arXiv:1402.4271] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    K. Nakamura and S.T. Petcov, Neutrino Mass, Mixing and Oscillations, in Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  6. [6]
    S.M. Bilenky, J. Hosek and S.T. Petcov, On Oscillations of Neutrinos with Dirac and Majorana Masses, Phys. Lett. B 94 (1980) 495 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    F. Capozzi, E. Lisi, A. Marrone, D. Montanino and A. Palazzo, Neutrino masses and mixings: Status of known and unknown 3ν parameters, Nucl. Phys. B 908 (2016) 218 [arXiv:1601.07777] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  8. [8]
    F. Capozzi, G.L. Fogli, E. Lisi, A. Marrone, D. Montanino and A. Palazzo, Status of three-neutrino oscillation parameters, circa 2013, Phys. Rev. D 89 (2014) 093018 [arXiv:1312.2878] [INSPIRE].ADSGoogle Scholar
  9. [9]
    M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, Updated fit to three neutrino mixing: status of leptonic CP-violation, JHEP 11 (2014) 052 [arXiv:1409.5439] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    A.D. Hanlon, S.-F. Ge and W.W. Repko, Phenomenological consequences of residual ℤ 2s and \( {\overline{\mathbb{Z}}}_2^s \) symmetries, Phys. Lett. B 729 (2014) 185 [arXiv:1308.6522] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    S.-F. Ge, D.A. Dicus and W.W. Repko, Residual Symmetries for Neutrino Mixing with a Large θ 13 and Nearly Maximal δ D , Phys. Rev. Lett. 108 (2012) 041801 [arXiv:1108.0964] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    S.-F. Ge, D.A. Dicus and W.W. Repko, Z 2 Symmetry Prediction for the Leptonic Dirac CP Phase, Phys. Lett. B 702 (2011) 220 [arXiv:1104.0602] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    D. Marzocca, S.T. Petcov, A. Romanino and M.C. Sevilla, Nonzero |U e3| from Charged Lepton Corrections and the Atmospheric Neutrino Mixing Angle, JHEP 05 (2013) 073 [arXiv:1302.0423] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    S.T. Petcov, Predicting the values of the leptonic CP-violation phases in theories with discrete flavour symmetries, Nucl. Phys. B 892 (2015) 400 [arXiv:1405.6006] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    I. Girardi, S.T. Petcov and A.V. Titov, Determining the Dirac CP-violation Phase in the Neutrino Mixing Matrix from Sum Rules, Nucl. Phys. B 894 (2015) 733 [arXiv:1410.8056] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  16. [16]
    I. Girardi, S.T. Petcov and A.V. Titov, Predictions for the Dirac CP-violation Phase in the Neutrino Mixing Matrix, Int. J. Mod. Phys. A 30 (2015) 1530035 [arXiv:1504.02402] [INSPIRE].MATHGoogle Scholar
  17. [17]
    I. Girardi, S.T. Petcov and A.V. Titov, Predictions for the Leptonic Dirac CP-violation Phase: a Systematic Phenomenological Analysis, Eur. Phys. J. C 75 (2015) 345 [arXiv:1504.00658] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    I. Girardi, S.T. Petcov, A.J. Stuart and A.V. Titov, Leptonic Dirac CP-violation Predictions from Residual Discrete Symmetries, Nucl. Phys. B 902 (2016) 1 [arXiv:1509.02502] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  19. [19]
    I. Girardi, S.T. Petcov and A.V. Titov, Predictions for the Majorana CP-violation Phases in the Neutrino Mixing Matrix and Neutrinoless Double Beta Decay, Nucl. Phys. B 911 (2016) 754 [arXiv:1605.04172] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    S.F. King, A. Merle and A.J. Stuart, The Power of Neutrino Mass Sum Rules for Neutrinoless Double Beta Decay Experiments, JHEP 12 (2013) 005 [arXiv:1307.2901] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    M. Agostini, A. Merle and K. Zuber, Probing flavor models with 76 Ge-based experiments on neutrinoless double-β decay, Eur. Phys. J. C 76 (2016) 176 [arXiv:1506.06133] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    J. Gehrlein, A. Merle and M. Spinrath, Predictivity of Neutrino Mass Sum Rules, Phys. Rev. D 94 (2016) 093003 [arXiv:1606.04965] [INSPIRE].Google Scholar
  23. [23]
    J. Gehrlein, A. Merle and M. Spinrath, Renormalisation Group Corrections to Neutrino Mass Sum Rules, JHEP 09 (2015) 066 [arXiv:1506.06139] [INSPIRE].CrossRefGoogle Scholar
  24. [24]
    S. Antusch, J. Kersten, M. Lindner and M. Ratz, Running neutrino masses, mixings and CP phases: Analytical results and phenomenological consequences, Nucl. Phys. B 674 (2003) 401 [hep-ph/0305273] [INSPIRE].
  25. [25]
    M.A. Schmidt and A.Yu. Smirnov, Quark Lepton Complementarity and Renormalization Group Effects, Phys. Rev. D 74 (2006) 113003 [hep-ph/0607232] [INSPIRE].
  26. [26]
    S. Boudjemaa and S.F. King, Deviations from Tri-bimaximal Mixing: Charged Lepton Corrections and Renormalization Group Running, Phys. Rev. D 79 (2009) 033001 [arXiv:0808.2782] [INSPIRE].ADSGoogle Scholar
  27. [27]
    S.T. Petcov, On Pseudo-Dirac Neutrinos, Neutrino Oscillations and Neutrinoless Double beta Decay, Phys. Lett. B 110 (1982) 245 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    F. Vissani, A study of the scenario with nearly degenerate Majorana neutrinos, hep-ph/9708483 [INSPIRE].
  29. [29]
    V.D. Barger, S. Pakvasa, T.J. Weiler and K. Whisnant, Bimaximal mixing of three neutrinos, Phys. Lett. B 437 (1998) 107 [hep-ph/9806387] [INSPIRE].
  30. [30]
    A.J. Baltz, A.S. Goldhaber and M. Goldhaber, The solar neutrino puzzle: An oscillation solution with maximal neutrino mixing, Phys. Rev. Lett. 81 (1998) 5730 [hep-ph/9806540] [INSPIRE].
  31. [31]
    Z.-z. Xing, Nearly tri bimaximal neutrino mixing and CP-violation, Phys. Lett. B 533 (2002) 85 [hep-ph/0204049] [INSPIRE].
  32. [32]
    P.F. Harrison, D.H. Perkins and W.G. Scott, Tri-bimaximal mixing and the neutrino oscillation data, Phys. Lett. B 530 (2002) 167 [hep-ph/0202074] [INSPIRE].
  33. [33]
    P.F. Harrison and W.G. Scott, Symmetries and generalizations of tri-bimaximal neutrino mixing, Phys. Lett. B 535 (2002) 163 [hep-ph/0203209] [INSPIRE].
  34. [34]
    X.G. He and A. Zee, Some simple mixing and mass matrices for neutrinos, Phys. Lett. B 560 (2003) 87 [hep-ph/0301092] [INSPIRE].
  35. [35]
    L. Wolfenstein, Oscillations Among Three Neutrino Types and CP-violation, Phys. Rev. D 18 (1978) 958 [INSPIRE].ADSGoogle Scholar
  36. [36]
    S. Antusch, S.F. King and M. Malinsky, Perturbative Estimates of Lepton Mixing Angles in Unified Models, Nucl. Phys. B 820 (2009) 32 [arXiv:0810.3863] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  37. [37]
    P. Ballett, S.F. King, C. Luhn, S. Pascoli and M.A. Schmidt, Testing solar lepton mixing sum rules in neutrino oscillation experiments, JHEP 12 (2014) 122 [arXiv:1410.7573] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    Y. Kajiyama, M. Raidal and A. Strumia, The golden ratio prediction for the solar neutrino mixing, Phys. Rev. D 76 (2007) 117301 [arXiv:0705.4559] [INSPIRE].ADSGoogle Scholar
  39. [39]
    L.L. Everett and A.J. Stuart, Icosahedral (A 5) Family Symmetry and the Golden Ratio Prediction for Solar Neutrino Mixing, Phys. Rev. D 79 (2009) 085005 [arXiv:0812.1057] [INSPIRE].ADSGoogle Scholar
  40. [40]
    W. Rodejohann, Unified Parametrization for Quark and Lepton Mixing Angles, Phys. Lett. B 671 (2009) 267 [arXiv:0810.5239] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    A. Adulpravitchai, A. Blum and W. Rodejohann, Golden Ratio Prediction for Solar Neutrino Mixing, New J. Phys. 11 (2009) 063026 [arXiv:0903.0531] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    C.H. Albright, A. Dueck and W. Rodejohann, Possible Alternatives to Tri-bimaximal Mixing, Eur. Phys. J. C 70 (2010) 1099 [arXiv:1004.2798] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    J.E. Kim and M.-S. Seo, Quark and lepton mixing angles with a dodeca-symmetry, JHEP 02 (2011) 097 [arXiv:1005.4684] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  44. [44]
    J. Zhang and S. Zhou, Radiative corrections to the solar lepton mixing sum rule, JHEP 08 (2016) 024 [arXiv:1604.03039] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    P.H. Frampton, S.T. Petcov and W. Rodejohann, On deviations from bimaximal neutrino mixing, Nucl. Phys. B 687 (2004) 31 [hep-ph/0401206] [INSPIRE].
  46. [46]
    J. Gehrlein, J.P. Oppermann, D. Schäfer and M. Spinrath, An SU(5) × A 5 golden ratio flavour model, Nucl. Phys. B 890 (2014) 539 [arXiv:1410.2057] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  47. [47]
    J. Gehrlein, S.T. Petcov, M. Spinrath and X. Zhang, Leptogenesis in an SU(5) × A 5 Golden Ratio Flavour Model, Nucl. Phys. B 896 (2015) 311 [arXiv:1502.00110] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  48. [48]
    J. Gehrlein, S.T. Petcov, M. Spinrath and X. Zhang, Leptogenesis in an SU(5) × A5 Golden Ratio Flavour Model: Addendum, Nucl. Phys. B 899 (2015) 617 [arXiv:1508.07930] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  49. [49]
    A. Meroni, S.T. Petcov and M. Spinrath, A SUSY SU(5) × T Unified Model of Flavour with large θ 13, Phys. Rev. D 86 (2012) 113003 [arXiv:1205.5241] [INSPIRE].ADSGoogle Scholar
  50. [50]
    D. Marzocca, S.T. Petcov, A. Romanino and M. Spinrath, Sizeable θ 13 from the Charged Lepton Sector in SU(5), (Tri-)Bimaximal Neutrino Mixing and Dirac CP-violation, JHEP 11 (2011) 009 [arXiv:1108.0614] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  51. [51]
    S. Antusch, C. Gross, V. Maurer and C. Sluka, \( {\theta}_{13}^{\mathrm{PMNS}}={\theta}_C/\sqrt{2} \) from GUTs, Nucl. Phys. B 866 (2013) 255 [arXiv:1205.1051] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    S. Antusch, S.F. King and M. Spinrath, Spontaneous CP-violation in A 4 × SU(5) with Constrained Sequential Dominance 2, Phys. Rev. D 87 (2013) 096018 [arXiv:1301.6764] [INSPIRE].ADSGoogle Scholar
  53. [53]
    S. Antusch, S.F. King and M. Spinrath, Measurable Neutrino Mass Scale in A 4 × SU(5), Phys. Rev. D 83 (2011) 013005 [arXiv:1005.0708] [INSPIRE].ADSGoogle Scholar
  54. [54]
    I. Girardi, A. Meroni, S.T. Petcov and M. Spinrath, Generalised geometrical CP-violation in a Tlepton flavour model, JHEP 02 (2014) 050 [arXiv:1312.1966] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    S. Antusch, J. Kersten, M. Lindner, M. Ratz and M.A. Schmidt, Running neutrino mass parameters in see-saw scenarios, JHEP 03 (2005) 024 [hep-ph/0501272] [INSPIRE].
  56. [56]
    S. Antusch, S.F. King, C. Luhn and M. Spinrath, Right Unitarity Triangles and Tri-Bimaximal Mixing from Discrete Symmetries and Unification, Nucl. Phys. B 850 (2011) 477 [arXiv:1103.5930] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  57. [57]
    S.M. Bilenky, S. Pascoli and S.T. Petcov, Majorana neutrinos, neutrino mass spectrum, CP-violation and neutrinoless double beta decay. 1. The three neutrino mixing case, Phys. Rev. D 64 (2001) 053010 [hep-ph/0102265] [INSPIRE].
  58. [58]
    S.T. Petcov, The Nature of Massive Neutrinos, Adv. High Energy Phys. 2013 (2013) 852987 [arXiv:1303.5819] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  59. [59]
    L.J. Hall, R. Rattazzi and U. Sarid, The Top quark mass in supersymmetric SO(10) unification, Phys. Rev. D 50 (1994) 7048 [hep-ph/9306309] [INSPIRE].
  60. [60]
    M. Carena, M. Olechowski, S. Pokorski and C.E.M. Wagner, Electroweak symmetry breaking and bottom-top Yukawa unification, Nucl. Phys. B 426 (1994) 269 [hep-ph/9402253] [INSPIRE].
  61. [61]
    R. Hempfling, Yukawa coupling unification with supersymmetric threshold corrections, Phys. Rev. D 49 (1994) 6168 [INSPIRE].ADSGoogle Scholar
  62. [62]
    T. Blazek, S. Raby and S. Pokorski, Finite supersymmetric threshold corrections to CKM matrix elements in the large tan Beta regime, Phys. Rev. D 52 (1995) 4151 [hep-ph/9504364] [INSPIRE].
  63. [63]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • J. Gehrlein
    • 1
  • S. T. Petcov
    • 2
    • 3
    • 4
  • M. Spinrath
    • 1
  • A. V. Titov
    • 2
  1. 1.Institut für Theoretische Teilchenphysik, Karlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.SISSA/INFNTriesteItaly
  3. 3.Kavli IPMU (WPI)University of TokyoKashiwaJapan
  4. 4.Institute of Nuclear Research and Nuclear EnergyBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations