Journal of High Energy Physics

, 2016:138 | Cite as

On W algebras commuting with a set of screenings

Open Access
Regular Article - Theoretical Physics


We consider the problem of classification of all W algebras which commute with a set of exponential screening operators. Assuming that the W algebra has a nontrivial current of spin 3, we find equations satisfied by the screening operators and classify their solutions.


Conformal and W Symmetry Conformal Field Theory 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    V.A. Fateev and S.L. Lukyanov, Physics reviews: Additional symmetries and exactly soluble models in two-dimensional conformal field theory, Sov. Sci. Rev. Phys. A 15 (1990) 1 [INSPIRE].Google Scholar
  2. [2]
    A.M. Polyakov, Quantum geometry of bosonic strings, Phys. Lett. B 103 (1981) 207 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    V.A. Fateev, A.B. Zamolodchikov and Al.B. Zamolodchikov, unpublished.Google Scholar
  4. [4]
    V.A. Fateev, The σ-model (dual) representation for a two-parameter family of integrable quantum field theories, Nucl. Phys. B 473 (1996) 509 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    B.L. Feigin and A.M. Semikhatov, The \( \widehat{sl}(2)\oplus \widehat{sl}(2)/\widehat{sl}(2) \) coset theory as a Hamiltonian reduction of \( \widehat{D}\left(2\Big|1;\alpha \right) \), Nucl. Phys. B 610 (2001) 489 [hep-th/0102078] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    B.L. Feigin and A.M. Semikhatov, W n(2) algebras, Nucl. Phys. B 698 (2004) 409 [math.QA/0401164] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    V.A. Fateev, Integrable deformations of affine Toda theories and duality, Nucl. Phys. B 479 (1996) 594 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    B.L. Feigin and E.V. Frenkel, A family of representations of affine Lie algebras, Russ. Math. Surv. 43 (1988) 221.MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    B. Feigin and E. Frenkel, Quantization of the Drinfeld-Sokolov reduction, Phys. Lett. B 246 (1990) 75 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    V.A. Fateev and S.L. Lukyanov, The Models of Two-Dimensional Conformal Quantum Field Theory with Z n Symmetry, Int. J. Mod. Phys. A 3 (1988) 507 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    M. Bershtein, B. Feigin and G. Merzon, Plane partitions with a “pit”: generating functions and representation theory, arXiv:1512.08779.
  12. [12]
    M. Goulian and M. Li, Correlation functions in Liouville theory, Phys. Rev. Lett. 66 (1991) 2051 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    V.A. Fateev and A.V. Litvinov, Multipoint correlation functions in Liouville field theory and minimal Liouville gravity, Theor. Math. Phys. 154 (2008) 454 [arXiv:0707.1664] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    P. Goddard, A. Kent and D.I. Olive, Unitary Representations of the Virasoro and Supervirasoro Algebras, Commun. Math. Phys. 103 (1986) 105 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    V.V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, Integrable structure of conformal field theory, quantum KdV theory and thermodynamic Bethe ansatz, Commun. Math. Phys. 177 (1996) 381 [hep-th/9412229] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    A.V. Litvinov, On spectrum of ILW hierarchy in conformal field theory, JHEP 11 (2013) 155 [arXiv:1307.8094] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    E. Witten, On string theory and black holes, Phys. Rev. D 44 (1991) 314 [INSPIRE].ADSMathSciNetMATHGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsChernogolovkaRussia
  2. 2.Kharkevich Institute for Information Transmission ProblemsMoscowRussia
  3. 3.California Institute of Technology, Department of PhysicsPasadenaU.S.A.

Personalised recommendations