Advertisement

Journal of High Energy Physics

, 2016:122 | Cite as

Capabilities of long-baseline experiments in the presence of a sterile neutrino

  • Debajyoti Dutta
  • Raj Gandhi
  • Boris Kayser
  • Mehedi MasudEmail author
  • Suprabh Prakash
Open Access
Regular Article - Theoretical Physics

Abstract

Assuming that there is a sterile neutrino, we ask what then is the ability of long-baseline experiments to i) establish that neutrino oscillation violates CP, ii) determine the three-neutrino mass ordering, and iii) determine which CP-violating phase or phases are the cause of any CP violation that may be observed. We find that the ability to establish CP violation and to determine the mass ordering could be very substantial. However, the effects of the sterile neutrino could be quite large, and it might prove very difficult to determine which phase is responsible for an observed CP violation. We explain why a sterile neutrino changes the long-baseline sensitivities to CP violation and to the mass ordering in the ways that it does. We note that long-baseline experiments can probe the presence of sterile neutrinos in a way that is different from, and complementary to, the probes of short-baseline experiments. We explore the question of how large sterile-active mixing angles need to be before long-baseline experiments can detect their effects, or how small they need to be before the interpretation of these experiments can safely disregard the possible existence of sterile neutrinos.

Keywords

Beyond Standard Model CP violation Neutrino Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    B. Pontecorvo, Neutrino Experiments and the Problem of Conservation of Leptonic Charge, Sov. Phys. JETP 26 (1968) 984 [Zh. Eksp. Teor. Fiz. 53 (1967) 1717] [INSPIRE].
  3. [3]
    V.N. Gribov and B. Pontecorvo, Neutrino astronomy and lepton charge, Phys. Lett. B 28 (1969) 493 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    Super-Kamiokande collaboration, Y. Ashie et al., Evidence for an oscillatory signature in atmospheric neutrino oscillation, Phys. Rev. Lett. 93 (2004) 101801 [hep-ex/0404034] [INSPIRE].
  5. [5]
    Super-Kamiokande collaboration, R. Wendell et al., Atmospheric neutrino oscillation analysis with sub-leading effects in Super-Kamiokande I, II and III, Phys. Rev. D 81 (2010) 092004 [arXiv:1002.3471] [INSPIRE].
  6. [6]
    SNO collaboration, B. Aharmim et al., Electron energy spectra, fluxes and day-night asymmetries of 8 B solar neutrinos from measurements with NaCl dissolved in the heavy-water detector at the Sudbury Neutrino Observatory, Phys. Rev. C 72 (2005) 055502 [nucl-ex/0502021] [INSPIRE].
  7. [7]
    K2K collaboration, M.H. Ahn et al., Measurement of Neutrino Oscillation by the K2K Experiment, Phys. Rev. D 74 (2006) 072003 [hep-ex/0606032] [INSPIRE].
  8. [8]
    MINOS collaboration, D.G. Michael et al., Observation of muon neutrino disappearance with the MINOS detectors and the NuMI neutrino beam, Phys. Rev. Lett. 97 (2006) 191801 [hep-ex/0607088] [INSPIRE].
  9. [9]
    MINOS collaboration, P. Adamson et al., A Study of Muon Neutrino Disappearance Using the Fermilab Main Injector Neutrino Beam, Phys. Rev. D 77 (2008) 072002 [arXiv:0711.0769] [INSPIRE].
  10. [10]
    T2K collaboration, K. Abe et al., Observation of Electron Neutrino Appearance in a Muon Neutrino Beam, Phys. Rev. Lett. 112 (2014) 061802 [arXiv:1311.4750] [INSPIRE].
  11. [11]
    T2K collaboration, K. Abe et al., Precise Measurement of the Neutrino Mixing Parameter θ 23 from Muon Neutrino Disappearance in an Off-Axis Beam, Phys. Rev. Lett. 112 (2014) 181801 [arXiv:1403.1532] [INSPIRE].
  12. [12]
    KamLAND collaboration, T. Araki et al., Measurement of neutrino oscillation with KamLAND: Evidence of spectral distortion, Phys. Rev. Lett. 94 (2005) 081801 [hep-ex/0406035] [INSPIRE].
  13. [13]
    Borexino collaboration, C. Arpesella et al., Direct Measurement of the 7 Be Solar Neutrino Flux with 192 Days of Borexino Data, Phys. Rev. Lett. 101 (2008) 091302 [arXiv:0805.3843] [INSPIRE].
  14. [14]
    Daya Bay collaboration, F.P. An et al., Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803 [arXiv:1203.1669] [INSPIRE].
  15. [15]
    RENO collaboration, J.K. Ahn et al., Observation of Reactor Electron Antineutrino Disappearance in the RENO Experiment, Phys. Rev. Lett. 108 (2012) 191802 [arXiv:1204.0626] [INSPIRE].
  16. [16]
    Double CHOOZ collaboration, Y. Abe et al., Reactor electron antineutrino disappearance in the Double CHOOZ experiment, Phys. Rev. D 86 (2012) 052008 [arXiv:1207.6632] [INSPIRE].
  17. [17]
    G.L. Fogli, E. Lisi, A. Marrone, D. Montanino, A. Palazzo and A.M. Rotunno, Global analysis of neutrino masses, mixings and phases: entering the era of leptonic CP-violation searches, Phys. Rev. D 86 (2012) 013012 [arXiv:1205.5254] [INSPIRE].ADSGoogle Scholar
  18. [18]
    M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, Global Analyses of Neutrino Oscillation Experiments, Nucl. Phys. B 908 (2016) 199 [arXiv:1512.06856] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  19. [19]
    D.V. Forero, M. Tortola and J.W.F. Valle, Neutrino oscillations refitted, Phys. Rev. D 90 (2014) 093006 [arXiv:1405.7540] [INSPIRE].ADSGoogle Scholar
  20. [20]
    G. Altarelli, Status of Neutrino Mass and Mixing, Int. J. Mod. Phys. A 29 (2014) 1444002 [arXiv:1404.3859] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    LSND collaboration, A.A. Aguilar-Arevalo et al., Evidence for neutrino oscillations from the observation of \( {\overline{\nu}}_e \) appearance in a \( {\overline{\nu}}_{\mu } \) beam, Phys. Rev. D 64 (2001) 112007 [hep-ex/0104049] [INSPIRE].
  22. [22]
    MiniBooNE collaboration, A.A. Aguilar-Arevalo et al., Unexplained Excess of Electron-Like Events From a 1-GeV Neutrino Beam, Phys. Rev. Lett. 102 (2009) 101802 [arXiv:0812.2243] [INSPIRE].
  23. [23]
    G. Mention et al., The Reactor Antineutrino Anomaly, Phys. Rev. D 83 (2011) 073006 [arXiv:1101.2755] [INSPIRE].ADSGoogle Scholar
  24. [24]
    T.A. Mueller et al., Improved Predictions of Reactor Antineutrino Spectra, Phys. Rev. C 83 (2011) 054615 [arXiv:1101.2663] [INSPIRE].ADSGoogle Scholar
  25. [25]
    MiniBooNE collaboration, A.A. Aguilar-Arevalo et al., Improved Search for \( {\overline{\nu}}_{\mu}\to {\overline{\nu}}_e \) Oscillations in the MiniBooNE Experiment, Phys. Rev. Lett. 110 (2013) 161801 [arXiv:1207.4809] [INSPIRE].
  26. [26]
    N. Klop and A. Palazzo, Imprints of CP-violation induced by sterile neutrinos in T2K data, Phys. Rev. D 91 (2015) 073017 [arXiv:1412.7524] [INSPIRE].ADSGoogle Scholar
  27. [27]
    R. Gandhi, B. Kayser, M. Masud and S. Prakash, The impact of sterile neutrinos on CP measurements at long baselines, JHEP 11 (2015) 039 [arXiv:1508.06275] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    NOvA collaboration, D.S. Ayres et al., The NOvA Technical Design Report, FERMILAB-DESIGN-2007-01 [INSPIRE].
  29. [29]
    J.L. Hewett et al., Fundamental Physics at the Intensity Frontier, arXiv:1205.2671 [doi: 10.2172/1042577] [INSPIRE].
  30. [30]
    LBNE collaboration, C. Adams et al., The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe, arXiv:1307.7335 [INSPIRE] and online pdf version at http://www.osti.gov/scitech/biblio/1128102.
  31. [31]
    Hyper-Kamiokande Proto-Collaboration collaboration, K. Abe et al., Physics potential of a long-baseline neutrino oscillation experiment using a J-PARC neutrino beam and Hyper-Kamiokande, Prog. Theor. Exp. Phys. 2015 (2015) 053C02 [arXiv:1502.05199] [INSPIRE].
  32. [32]
    LAr1-ND, ICARUS-WA104 and MicroBooNE collaborations, M. Antonello et al., A Proposal for a Three Detector Short-Baseline Neutrino Oscillation Program in the Fermilab Booster Neutrino Beam, arXiv:1503.01520 [INSPIRE].
  33. [33]
    MicroBooNE, ICARUS and SBND collaborations, J. Zennamo, The Short-Baseline Neutrino Program, in proceedings of the 48th Annual Fermilab User’s Meeting, Fermilab, Batavia, Illinois, U.S.A., June 9-11 2015 and online pdf version at https://indico.fnal.gov/ getFile.py/access?contribId=54&sessionId=23&resId=0&materialId=slides&confId=8982.
  34. [34]
    D. Garcia-Gamez, Short-Baseline Neutrino Oscillation Program at Fermilab, The University of Manchester (2016) and online pdf version at http://indico.hep.manchester.ac.uk/getFile. py/access?contribId=156&sessionId=6&resId=0&materialId=slides&confId=4534.
  35. [35]
    L. Camilleri, The Fermilab short-baseline neutrino program, AIP Conf. Proc. 1680 (2015) 020004 [INSPIRE].CrossRefGoogle Scholar
  36. [36]
    A. Donini, M. Lusignoli and D. Meloni, Telling three neutrinos from four neutrinos at the neutrino factory, Nucl. Phys. B 624 (2002) 405 [hep-ph/0107231] [INSPIRE].
  37. [37]
    A. Dighe and S. Ray, Signatures of heavy sterile neutrinos at long baseline experiments, Phys. Rev. D 76 (2007) 113001 [arXiv:0709.0383] [INSPIRE].ADSGoogle Scholar
  38. [38]
    A. Donini, K.-i. Fuki, J. Lopez-Pavon, D. Meloni and O. Yasuda, The Discovery channel at the Neutrino Factory: ν μν τ pointing to sterile neutrinos, JHEP 08 (2009) 041 [arXiv:0812.3703] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    O. Yasuda, Sensitivity to sterile neutrino mixings and the discovery channel at a neutrino factory, arXiv:1004.2388 [INSPIRE].
  40. [40]
    D. Meloni, J. Tang and W. Winter, Sterile neutrinos beyond LSND at the Neutrino Factory, Phys. Rev. D 82 (2010) 093008 [arXiv:1007.2419] [INSPIRE].ADSGoogle Scholar
  41. [41]
    B. Bhattacharya, A.M. Thalapillil and C.E.M. Wagner, Implications of sterile neutrinos for medium/long-baseline neutrino experiments and the determination of θ 13, Phys. Rev. D 85 (2012) 073004 [arXiv:1111.4225] [INSPIRE].ADSGoogle Scholar
  42. [42]
    MINOS collaboration, P. Adamson et al., Combined analysis of ν μ disappearance and ν μν e appearance in MINOS using accelerator and atmospheric neutrinos, Phys. Rev. Lett. 112 (2014) 191801 [arXiv:1403.0867] [INSPIRE].
  43. [43]
    D. Hollander and I. Mocioiu, Minimal 3 + 2 sterile neutrino model at LBNE, Phys. Rev. D 91 (2015) 013002 [arXiv:1408.1749] [INSPIRE].ADSGoogle Scholar
  44. [44]
    J.M. Berryman, A. de Gouvêa, K.J. Kelly and A. Kobach, Sterile neutrino at the Deep Underground Neutrino Experiment, Phys. Rev. D 92 (2015) 073012 [arXiv:1507.03986] [INSPIRE].ADSGoogle Scholar
  45. [45]
    S.K. Agarwalla, S.S. Chatterjee, A. Dasgupta and A. Palazzo, Discovery Potential of T2K and NOvA in the Presence of a Light Sterile Neutrino, JHEP 02 (2016) 111 [arXiv:1601.05995] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    S.K. Agarwalla, S.S. Chatterjee and A. Palazzo, Physics Reach of DUNE with a Light Sterile Neutrino, JHEP 09 (2016) 016 [arXiv:1603.03759] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    M.A. Acero, A.A. Aguilar-Arevalo and J.C. D’Olivo, Earth matter effect on active-sterile neutrino oscillations, J. Phys. Conf. Ser. 315 (2011) 012015 [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    P. Huber, M. Lindner and W. Winter, Simulation of long-baseline neutrino oscillation experiments with GLoBES (General Long Baseline Experiment Simulator), Comput. Phys. Commun. 167 (2005) 195 [hep-ph/0407333] [INSPIRE].
  49. [49]
    P. Huber, J. Kopp, M. Lindner, M. Rolinec and W. Winter, New features in the simulation of neutrino oscillation experiments with GLoBES 3.0: General Long Baseline Experiment Simulator, Comput. Phys. Commun. 177 (2007) 432 [hep-ph/0701187] [INSPIRE].
  50. [50]
    J. Kopp, Sterile neutrinos and non-standard neutrino interactions in GLoBES, (2010) https://www.mpi-hd.mpg.de/personalhomes/globes/tools/snu-1.0.pdf.
  51. [51]
    J. Kopp, M. Lindner, T. Ota and J. Sato, Non-standard neutrino interactions in reactor and superbeam experiments, Phys. Rev. D 77 (2008) 013007 [arXiv:0708.0152] [INSPIRE].ADSGoogle Scholar
  52. [52]
    M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, Updated fit to three neutrino mixing: status of leptonic CP-violation, JHEP 11 (2014) 052 [arXiv:1409.5439] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    F. Capozzi, G.L. Fogli, E. Lisi, A. Marrone, D. Montanino and A. Palazzo, Status of three-neutrino oscillation parameters, circa 2013, Phys. Rev. D 89 (2014) 093018 [arXiv:1312.2878] [INSPIRE].ADSGoogle Scholar
  54. [54]
    A. Esmaili, E. Kemp, O.L.G. Peres and Z. Tabrizi, Probing light sterile neutrinos in medium baseline reactor experiments, Phys. Rev. D 88 (2013) 073012 [arXiv:1308.6218] [INSPIRE].ADSGoogle Scholar
  55. [55]
    J. Kopp, P.A.N. Machado, M. Maltoni and T. Schwetz, Sterile Neutrino Oscillations: The Global Picture, JHEP 05 (2013) 050 [arXiv:1303.3011] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    Daya Bay collaboration, F.P. An et al., Search for a Light Sterile Neutrino at Daya Bay, Phys. Rev. Lett. 113 (2014) 141802 [arXiv:1407.7259] [INSPIRE].
  57. [57]
    Y. Declais et al., Search for neutrino oscillations at 15-meters, 40-meters and 95-meters from a nuclear power reactor at Bugey, Nucl. Phys. B 434 (1995) 503 [INSPIRE].ADSGoogle Scholar
  58. [58]
    B. Jones, Results of the Search for Sterile Neutrinos with IceCube, talk given at FermiLab, February 12 2016 and online pdf version at https://hep.uchicago.edu/seminars/semwin2016/BenJones1.pdf .
  59. [59]
    MINOS collaboration, P. Adamson et al., Active to sterile neutrino mixing limits from neutral-current interactions in MINOS, Phys. Rev. Lett. 107 (2011) 011802 [arXiv:1104.3922] [INSPIRE].
  60. [60]
    M. Bass et al., Baseline Optimization for the Measurement of CP-violation, Mass Hierarchy and θ 23 Octant in a Long-Baseline Neutrino Oscillation Experiment, Phys. Rev. D 91 (2015) 052015 [arXiv:1311.0212] [INSPIRE].ADSGoogle Scholar
  61. [61]
    T2K collaboration, Y. Itow et al., The JHF-Kamioka neutrino project, in proceedings of the 3rd Workshop on Neutrino Oscillations and Their Origin (NOON 2001), Kashiwa, Japan, December 5-8 2001, pp. 239-248 [hep-ex/0106019] [INSPIRE].
  62. [62]
    M. Ishitsuka, T. Kajita, H. Minakata and H. Nunokawa, Resolving neutrino mass hierarchy and CP degeneracy by two identical detectors with different baselines, Phys. Rev. D 72 (2005) 033003 [hep-ph/0504026] [INSPIRE].
  63. [63]
    S.K. Agarwalla, S. Prakash, S.K. Raut and S.U. Sankar, Potential of optimized NOνA for large θ 13 & combined performance with a LArTPC & T2K, JHEP 12 (2012) 075 [arXiv:1208.3644] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    DUNE collaboration, R. Acciarri et al., Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE), arXiv:1601.02984 [INSPIRE].
  65. [65]
    B. Choudhary, R. Gandhi, S.R. Mishra, S. Mishra and J. Strait, LBNE-INDIA. Proposal of Indian Institutions and Fermilab Collaboration for Participation in the Long-Baseline Neutrino Experiment at Fermilab (A Proposal to Design and Build a High-Resolution Near Detector and to Contribute to the Liquid Argon Far Detector) to Department of Atomic Energy and Department of Science and Technology Government of India, (2012) http://lbne2-docdb.fnal.gov/cgi-bin/RetrieveFile?docid=6704&filename= LBNE-India-DPR-V12-Science.pdf&version=1.
  66. [66]
    S. Choubey and D. Pramanik, Constraints on Sterile Neutrino Oscillations using DUNE Near Detector, arXiv:1604.04731 [INSPIRE].
  67. [67]
    M. Masud and P. Mehta, Nonstandard interactions spoiling the CP-violation sensitivity at DUNE and other long baseline experiments, Phys. Rev. D 94 (2016) 013014 [arXiv:1603.01380] [INSPIRE].ADSGoogle Scholar
  68. [68]
    M. Masud and P. Mehta, Nonstandard interactions and resolving the ordering of neutrino masses at DUNE and other long baseline experiments, Phys. Rev. D 94 (2016) 053007 [arXiv:1606.05662] [INSPIRE].ADSGoogle Scholar
  69. [69]
    E. Worcester, private communication (2016).Google Scholar
  70. [70]
    M. Masud, A. Chatterjee and P. Mehta, Probing CP-violation signal at DUNE in presence of non-standard neutrino interactions, J. Phys. G 43 (2016) 095005 [arXiv:1510.08261] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    P. Coloma, Non-Standard Interactions in propagation at the Deep Underground Neutrino Experiment, JHEP 03 (2016) 016 [arXiv:1511.06357] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    A. de Gouvêa and K.J. Kelly, Non-standard Neutrino Interactions at DUNE, Nucl. Phys. B 908 (2016) 318 [arXiv:1511.05562] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    D.V. Forero and P. Huber, Hints for leptonic CP-violation or New Physics?, Phys. Rev. Lett. 117 (2016) 031801 [arXiv:1601.03736] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    J. Liao, D. Marfatia and K. Whisnant, Degeneracies in long-baseline neutrino experiments from nonstandard interactions, Phys. Rev. D 93 (2016) 093016 [arXiv:1601.00927] [INSPIRE].ADSGoogle Scholar
  75. [75]
    K. Huitu, T.J. Kärkkäinen, J. Maalampi and S. Vihonen, Constraining the nonstandard interaction parameters in long baseline neutrino experiments, Phys. Rev. D 93 (2016) 053016 [arXiv:1601.07730] [INSPIRE].ADSGoogle Scholar
  76. [76]
    P. Bakhti and Y. Farzan, CP-Violation and Non-Standard Interactions at the MOMENT, JHEP 07 (2016) 109 [arXiv:1602.07099] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    A. Rashed and A. Datta, Determination of mass hierarchy with ν μν τ appearance and the effect of nonstandard interactions, arXiv:1603.09031 [INSPIRE].
  78. [78]
    P. Coloma and T. Schwetz, Generalized mass ordering degeneracy in neutrino oscillation experiments, Phys. Rev. D 94 (2016) 055005 [arXiv:1604.05772] [INSPIRE].ADSGoogle Scholar
  79. [79]
    A. de Gouvêa and K.J. Kelly, False Signals of CP-Invariance Violation at DUNE, arXiv:1605.09376 [INSPIRE].
  80. [80]
    M. Blennow, S. Choubey, T. Ohlsson, D. Pramanik and S.K. Raut, A combined study of source, detector and matter non-standard neutrino interactions at DUNE, JHEP 08 (2016) 090 [arXiv:1606.08851] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Debajyoti Dutta
    • 1
  • Raj Gandhi
    • 1
  • Boris Kayser
    • 2
  • Mehedi Masud
    • 1
    Email author
  • Suprabh Prakash
    • 1
    • 3
  1. 1.Harish-Chandra Research InstituteAllahabadIndia
  2. 2.Theoretical Physics DepartmentFermilabBataviaU.S.A.
  3. 3.School of PhysicsSun Yat-Sen (Zhongshan) UniversityGuangzhouP.R. China

Personalised recommendations