BPS counting for knots and combinatorics on words

Abstract

We discuss relations between quantum BPS invariants defined in terms of a product decomposition of certain series, and difference equations (quantum A-polynomials) that annihilate such series. We construct combinatorial models whose structure is encoded in the form of such difference equations, and whose generating functions (Hilbert-Poincaré series) are solutions to those equations and reproduce generating series that encode BPS invariants. Furthermore, BPS invariants in question are expressed in terms of Lyndon words in an appropriate language, thereby relating counting of BPS states to the branch of mathematics referred to as combinatorics on words. We illustrate these results in the framework of colored extremal knot polynomials: among others we determine dual quantum extremal A-polynomials for various knots, present associated combinatorial models, find corresponding BPS invariants (extremal Labastida-Mariño-Ooguri-Vafa invariants) and discuss their integrality.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    M. Reineke, Degenerate cohomological Hall algebra and quantized Donaldson-Thomas invariants for m-loop quivers, Doc. Math. 17 (2012) 1 [arXiv:1102.3978].

    ADS  MathSciNet  MATH  Google Scholar 

  2. [2]

    M. Lothaire, Combinatorics on Words, Encyclopedia of Mathematics and its Applications volume 17, Addison Wesley, Reading U.S.A. (1983).

  3. [3]

    M. Lothaire, Algebraic combinatorics on words, Encyclopedia of Mathematics and its Applications volume 90, Cambridge University Press, Cambridge U.K. (2002).

  4. [4]

    J. Berstel and D. Perrin, The origins of combinatorics on words, Eur. J. Comb. 28 (2007) 996.

    MathSciNet  Article  MATH  Google Scholar 

  5. [5]

    R. Gopakumar and C. Vafa, M theory and topological strings. 1, hep-th/9809187 [INSPIRE].

  6. [6]

    R. Gopakumar and C. Vafa, M theory and topological strings. 2, hep-th/9812127 [INSPIRE].

  7. [7]

    M. Aganagic and C. Vafa, Mirror symmetry, D-branes and counting holomorphic discs, hep-th/0012041 [INSPIRE].

  8. [8]

    M. Aganagic, A. Klemm and C. Vafa, Disk instantons, mirror symmetry and the duality web, Z. Naturforsch. A 57 (2002) 1 [hep-th/0105045] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  9. [9]

    H. Ooguri and C. Vafa, Knot invariants and topological strings, Nucl. Phys. B 577 (2000) 419 [hep-th/9912123] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  10. [10]

    J.M.F. Labastida and M. Mariño, Polynomial invariants for torus knots and topological strings, Commun. Math. Phys. 217 (2001) 423 [hep-th/0004196] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  11. [11]

    J.M.F. Labastida, M. Marino and C. Vafa, Knots, links and branes at large N, JHEP 11 (2000) 007.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  12. [12]

    M. Kontsevich, A.S. Schwarz and V. Vologodsky, Integrality of instanton numbers and p-adic B-model, Phys. Lett. B 637 (2006) 97 [hep-th/0603106] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  13. [13]

    V. Vologodsky, Integrality of instanton numbers, arXiv:0707.4617.

  14. [14]

    A. Schwarz and V. Vologodsky, Integrality theorems in the theory of topological strings, Nucl. Phys. B 821 (2009) 506.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  15. [15]

    A. Schwarz, V. Vologodsky and J. Walcher, Framing the di-logarithm (over Z), Proc. Symp. Pure Math. 90 (2015) 113 [arXiv:1306.4298] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  16. [16]

    M. Kontsevich and Y. Soibelman, Stability structures, motivic Donaldson-Thomas invariants and cluster transformations, arXiv:0811.2435 [INSPIRE].

  17. [17]

    D. Gaiotto, G.W. Moore and A. Neitzke, Four-dimensional wall-crossing via three-dimensional field theory, Commun. Math. Phys. 299 (2010) 163 [arXiv:0807.4723] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  18. [18]

    T. Dimofte and S. Gukov, Refined, motivic and quantum, Lett. Math. Phys. 91 (2010) 1 [arXiv:0904.1420] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  19. [19]

    M. Reineke, Cohomology of quiver moduli, functional equations, and integrality of Donaldson-Thomas type invariants, Comp. Math. 147 (2011) 943.

    MathSciNet  Article  MATH  Google Scholar 

  20. [20]

    S. Gukov and M. Stošić, Homological algebra of knots and BPS states, Proc. Symp. Pure Math. 85 (2012) 125 [arXiv:1112.0030] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  21. [21]

    P. Wedrich, q-holonomic formulas for colored HOMFLY polynomials of 2-bridge links, arXiv:1410.3769 [INSPIRE].

  22. [22]

    S. Garoufalidis, P. Kucharski and P. Sulkowski, Knots, BPS states and algebraic curves, Commun. Math. Phys. 346 (2016) 75 [arXiv:1504.06327] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  23. [23]

    M. Aganagic and C. Vafa, Large-N duality, mirror symmetry and a Q-deformed A-polynomial for knots, arXiv:1204.4709 [INSPIRE].

  24. [24]

    H. Fuji, S. Gukov and P. Sulkowski, Super-A-polynomial for knots and BPS states, Nucl. Phys. B 867 (2013) 506 [arXiv:1205.1515] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  25. [25]

    S. Nawata, P. Ramadevi, Zodinmawia and X. Sun, Super-A-polynomials for twist knots, JHEP 11 (2012) 157 [arXiv:1209.1409] [INSPIRE].

  26. [26]

    H. Fuji, S. Gukov, M. Stosic and P. Sulkowski, 3d analogs of Argyres-Douglas theories and knot homologies, JHEP 01 (2013) 175 [arXiv:1209.1416] [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    S. Garoufalidis, A.D. Lauda and T.T.Q. Le, The colored HOMFLYPT function is q-holonomic, arXiv:1604.08502 [INSPIRE].

  28. [28]

    S. Gukov, S. Nawata, I. Saberi, M. Stošić and P. Sulkowski, Sequencing BPS Spectra, JHEP 03 (2016) 004 [arXiv:1512.07883] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  29. [29]

    L. Ng, Combinatorial knot contact homology and transverse knots, Adv. Math. 227 (2011) 2189.

    MathSciNet  Article  MATH  Google Scholar 

  30. [30]

    S. Gukov and P. Sulkowski, A-polynomial, B-model and quantization, JHEP 02 (2012) 070 [arXiv:1108.0002] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  31. [31]

    P. Norbury, Quantum curves and topological recursion, Proc. Symp. Pure Math. 93 (2015) 41 [arXiv:1502.04394] [INSPIRE].

    Google Scholar 

  32. [32]

    A. Schwarz, Quantum curves, Commun. Math. Phys. 338 (2015) 483 [arXiv:1401.1574] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  33. [33]

    O. Dumitrescu and M. Mulase, Lectures on the topological recursion for Higgs bundles and quantum curves, arXiv:1509.09007 [INSPIRE].

  34. [34]

    M. Manabe and P. Sulkowski, Quantum curves and conformal field theory, arXiv:1512.05785 [INSPIRE].

  35. [35]

    V. Bouchard and B. Eynard, Reconstructing WKB from topological recursion, arXiv:1606.04498 [INSPIRE].

  36. [36]

    J. Fürlinger and J. Hofbauer, q-catalan numbers, J. Comb. Theory A 40 (1985) 248.

    MathSciNet  Article  MATH  Google Scholar 

  37. [37]

    RISC Combinatorics group, A. Riese, qZeil.m, http://www.risc.jku.at/research/combinat/software/qZeil/.

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Piotr Sułkowski.

Additional information

ArXiv ePrint: 1608.06600

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(NB 102 kb)

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kucharski, P., Sułkowski, P. BPS counting for knots and combinatorics on words. J. High Energ. Phys. 2016, 120 (2016). https://doi.org/10.1007/JHEP11(2016)120

Download citation

Keywords

  • Chern-Simons Theories
  • Non-Commutative Geometry
  • Topological Field Theories
  • Topological Strings