Advertisement

Journal of High Energy Physics

, 2016:111 | Cite as

A comprehensive approach to dark matter studies: exploration of simplified top-philic models

  • Chiara Arina
  • Mihailo Backović
  • Eric Conte
  • Benjamin Fuks
  • Jun Guo
  • Jan Heisig
  • Benoît Hespel
  • Michael Krämer
  • Fabio Maltoni
  • Antony Martini
  • Kentarou Mawatari
  • Mathieu Pellen
  • Eleni Vryonidou
Open Access
Regular Article - Theoretical Physics

Abstract

Studies of dark matter lie at the interface of collider physics, astrophysics and cosmology. Constraining models featuring dark matter candidates entails the capability to provide accurate predictions for large sets of observables and compare them to a wide spectrum of data. We present a framework which, starting from a model Lagrangian, allows one to consistently and systematically make predictions, as well as to confront those predictions with a multitude of experimental results. As an application, we consider a class of simplified dark matter models where a scalar mediator couples only to the top quark and a fermionic dark sector (i.e. the simplified top-philic dark matter model). We study in detail the complementarity of relic density, direct/indirect detection and collider searches in constraining the multi-dimensional model parameter space, and efficiently identify regions where individual approaches to dark matter detection provide the most stringent bounds. In the context of collider studies of dark matter, we point out the complementarity of LHC searches in probing different regions of the model parameter space with final states involving top quarks, photons, jets and/or missing energy. Our study of dark matter production at the LHC goes beyond the tree-level approximation and we show examples of how higher-order corrections to dark matter production processes can affect the interpretation of the experimental results.

Keywords

NLO Computations Phenomenological Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    G. Bertone, D. Hooper and J. Silk, Particle dark matter: evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    G. Bertone, Particle dark matter: observations, models and searches, Cambridge Univ. Press, Cambridge U.K. (2010).CrossRefzbMATHGoogle Scholar
  3. [3]
    M. Drees and G. Gerbier, Mini-review of dark matter: 2012, arXiv:1204.2373 [INSPIRE].
  4. [4]
    D. Clowe et al., A direct empirical proof of the existence of dark matter, Astrophys. J. 648 (2006) L109 [astro-ph/0608407] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    LHC New Physics Working Group collaboration, D. Alves, Simplified models for LHC new physics searches, J. Phys. G 39 (2012) 105005 [arXiv:1105.2838] [INSPIRE].
  6. [6]
    D. Abercrombie et al., Dark matter benchmark models for early LHC run-2 searches: report of the ATLAS/CMS dark matter forum, arXiv:1507.00966 [INSPIRE].
  7. [7]
    M.R. Buckley, D. Feld and D. Goncalves, Scalar simplified models for dark matter, Phys. Rev. D 91 (2015) 015017 [arXiv:1410.6497] [INSPIRE].ADSGoogle Scholar
  8. [8]
    U. Haisch and E. Re, Simplified dark matter top-quark interactions at the LHC, JHEP 06 (2015) 078 [arXiv:1503.00691] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    J. Heisig, M. Krämer, M. Pellen and C. Wiebusch, Constraints on Majorana dark matter from the LHC and IceCube, Phys. Rev. D 93 (2016) 055029 [arXiv:1509.07867] [INSPIRE].ADSGoogle Scholar
  10. [10]
    N.F. Bell, Y. Cai and R.K. Leane, Mono-W dark matter signals at the LHC: simplified model analysis, JCAP 01 (2016) 051 [arXiv:1512.00476] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    A.J. Brennan, M.F. McDonald, J. Gramling and T.D. Jacques, Collide and conquer: constraints on simplified dark matter models using Mono-X collider searches, JHEP 05 (2016) 112 [arXiv:1603.01366] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    T. du Pree, K. Hahn, P. Harris and C. Roskas, Cosmological constraints on dark matter models for collider searches, arXiv:1603.08525 [INSPIRE].
  13. [13]
    C.B. Jackson, G. Servant, G. Shaughnessy, T.M.P. Tait and M. Taoso, Gamma-ray lines and one-loop continuum from s-channel dark matter annihilations, JCAP 07 (2013) 021 [arXiv:1302.1802] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    J. Abdallah et al., Simplified models for dark matter searches at the LHC, Phys. Dark Univ. 9-10 (2015) 8 [arXiv:1506.03116] [INSPIRE].CrossRefGoogle Scholar
  15. [15]
    R.M. Godbole, G. Mendiratta and T.M.P. Tait, A simplified model for dark matter interacting primarily with gluons, JHEP 08 (2015) 064 [arXiv:1506.01408] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    Q.-F. Xiang, X.-J. Bi, P.-F. Yin and Z.-H. Yu, Searches for dark matter signals in simplified models at future hadron colliders, Phys. Rev. D 91 (2015) 095020 [arXiv:1503.02931] [INSPIRE].ADSGoogle Scholar
  17. [17]
    A. DiFranzo, K.I. Nagao, A. Rajaraman and T.M.P. Tait, Simplified models for dark matter interacting with quarks, JHEP 11 (2013) 014 [Erratum ibid. 01 (2014) 162] [arXiv:1308.2679] [INSPIRE].
  18. [18]
    P. Harris, V.V. Khoze, M. Spannowsky and C. Williams, Closing up on dark sectors at colliders: from 14 to 100 TeV, Phys. Rev. D 93 (2016) 054030 [arXiv:1509.02904] [INSPIRE].ADSGoogle Scholar
  19. [19]
    V.V. Khoze, G. Ro and M. Spannowsky, Spectroscopy of scalar mediators to dark matter at the LHC and at 100 TeV, Phys. Rev. D 92 (2015) 075006 [arXiv:1505.03019] [INSPIRE].ADSGoogle Scholar
  20. [20]
    P. Harris, V.V. Khoze, M. Spannowsky and C. Williams, Constraining dark sectors at colliders: beyond the effective theory approach, Phys. Rev. D 91 (2015) 055009 [arXiv:1411.0535] [INSPIRE].ADSGoogle Scholar
  21. [21]
    Y. Zhang, Top quark mediated dark matter, Phys. Lett. B 720 (2013) 137 [arXiv:1212.2730] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — a complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    C. Degrande, Automatic evaluation of UV and R 2 terms for beyond the Standard Model Lagrangians: a proof-of-principle, Comput. Phys. Commun. 197 (2015) 239 [arXiv:1406.3030] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    E. Conte, B. Fuks and G. Serret, MadAnalysis 5, a user-friendly framework for collider phenomenology, Comput. Phys. Commun. 184 (2013) 222 [arXiv:1206.1599] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    E. Conte, B. Dumont, B. Fuks and C. Wymant, Designing and recasting LHC analyses with MadAnalysis 5, Eur. Phys. J. C 74 (2014) 3103 [arXiv:1405.3982] [INSPIRE].CrossRefGoogle Scholar
  27. [27]
    B. Dumont et al., Toward a public analysis database for LHC new physics searches using MadAnalysis 5, Eur. Phys. J. C 75 (2015) 56 [arXiv:1407.3278] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
  29. [29]
    M. Backović, K. Kong and M. McCaskey, MadDM v.1.0: computation of dark matter relic abundance using MadGraph5, Phys. Dark Univ. 5-6 (2014) 18 [arXiv:1308.4955] [INSPIRE].CrossRefGoogle Scholar
  30. [30]
    M. Backović, A. Martini, O. Mattelaer, K. Kong and G. Mohlabeng, Direct detection of dark matter with MadDM v.2.0, Phys. Dark Univ. 9-10 (2015) 37 [arXiv:1505.04190] [INSPIRE].CrossRefGoogle Scholar
  31. [31]
    F. Feroz and M.P. Hobson, Multimodal nested sampling: an efficient and robust alternative to MCMC methods for astronomical data analysis, Mon. Not. Roy. Astron. Soc. 384 (2008) 449 [arXiv:0704.3704] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    F. Feroz, M.P. Hobson and M. Bridges, MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics, Mon. Not. Roy. Astron. Soc. 398 (2009) 1601 [arXiv:0809.3437] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: an effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    N. Craig, J. Galloway and S. Thomas, Searching for signs of the second Higgs doublet, arXiv:1305.2424 [INSPIRE].
  35. [35]
    M. Carena, I. Low, N.R. Shah and C.E.M. Wagner, Impersonating the Standard Model Higgs boson: alignment without decoupling, JHEP 04 (2014) 015 [arXiv:1310.2248] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    Y.G. Kim, K.Y. Lee and S. Shin, Singlet fermionic dark matter, JHEP 05 (2008) 100 [arXiv:0803.2932] [INSPIRE].ADSGoogle Scholar
  37. [37]
    S. Baek, P. Ko and W.-I. Park, Search for the Higgs portal to a singlet fermionic dark matter at the LHC, JHEP 02 (2012) 047 [arXiv:1112.1847] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    L. Lopez-Honorez, T. Schwetz and J. Zupan, Higgs portal, fermionic dark matter and a Standard Model like Higgs at 125 GeV, Phys. Lett. B 716 (2012) 179 [arXiv:1203.2064] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    S. Baek, P. Ko and W.-I. Park, Invisible Higgs decay width vs. dark matter direct detection cross section in Higgs portal dark matter models, Phys. Rev. D 90 (2014) 055014 [arXiv:1405.3530] [INSPIRE].ADSGoogle Scholar
  40. [40]
    S. Baek, P. Ko, M. Park, W.-I. Park and C. Yu, Beyond the dark matter effective field theory and a simplified model approach at colliders, Phys. Lett. B 756 (2016) 289 [arXiv:1506.06556] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    P. Ko and H. Yokoya, Search for Higgs portal DM at the ILC, JHEP 08 (2016) 109 [arXiv:1603.04737] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    C. Englert, M. McCullough and M. Spannowsky, S-channel dark matter simplified models and unitarity, Phys. Dark Univ. 14 (2016) 48 [arXiv:1604.07975] [INSPIRE].CrossRefGoogle Scholar
  43. [43]
    D. Barducci et al., Monojet searches for momentum-dependent dark matter interactions, arXiv:1609.07490 [INSPIRE].
  44. [44]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  45. [45]
    LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].
  46. [46]
    SuperCDMS collaboration, R. Agnese et al., New results from the search for low-mass weakly interacting massive particles with the CDMS low ionization threshold experiment, Phys. Rev. Lett. 116 (2016) 071301 [arXiv:1509.02448] [INSPIRE].
  47. [47]
    Fermi-LAT collaboration, M. Ackermann et al., Searching for dark matter annihilation from milky way dwarf spheroidal galaxies with six years of Fermi Large Area Telescope data, Phys. Rev. Lett. 115 (2015) 231301 [arXiv:1503.02641] [INSPIRE].
  48. [48]
    Fermi-LAT collaboration, M. Ackermann et al., Updated search for spectral lines from galactic dark matter interactions with pass 8 data from the Fermi Large Area Telescope, Phys. Rev. D 91 (2015) 122002 [arXiv:1506.00013] [INSPIRE].
  49. [49]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs4.1: two dark matter candidates, Comput. Phys. Commun. 192 (2015) 322 [arXiv:1407.6129] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    M. Backović, M. Krämer, F. Maltoni, A. Martini, K. Mawatari and M. Pellen, Higher-order QCD predictions for dark matter production at the LHC in simplified models with s-channel mediators, Eur. Phys. J. C 75 (2015) 482 [arXiv:1508.05327] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    O. Mattelaer and E. Vryonidou, Dark matter production through loop-induced processes at the LHC: the s-channel mediator case, Eur. Phys. J. C 75 (2015) 436 [arXiv:1508.00564] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    M. Neubert, J. Wang and C. Zhang, Higher-order QCD predictions for dark matter production in mono-Z searches at the LHC, JHEP 02 (2016) 082 [arXiv:1509.05785] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    Simplified dark matter models webpage, http://feynrules.irmp.ucl.ac.be/wiki/DMsimp.
  54. [54]
    Particle Data Group collaboration, J. Beringer et al., Review of particle physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].
  55. [55]
    J.M. Alarcon, J. Martin Camalich and J.A. Oller, The chiral representation of the πN scattering amplitude and the pion-nucleon sigma term, Phys. Rev. D 85 (2012) 051503 [arXiv:1110.3797] [INSPIRE].ADSGoogle Scholar
  56. [56]
    J.M. Alarcon, L.S. Geng, J. Martin Camalich and J.A. Oller, The strangeness content of the nucleon from effective field theory and phenomenology, Phys. Lett. B 730 (2014) 342 [arXiv:1209.2870] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    F. D’Eramo and M. Procura, Connecting dark matter UV complete models to direct detection rates via effective field theory, JHEP 04 (2015) 054 [arXiv:1411.3342] [INSPIRE].CrossRefGoogle Scholar
  58. [58]
    L. Vecchi, WIMPs and un-naturalness, arXiv:1312.5695 [INSPIRE].
  59. [59]
    Y.-Y. Mao, L.E. Strigari, R.H. Wechsler, H.-Y. Wu and O. Hahn, Halo-to-halo similarity and scatter in the velocity distribution of dark matter, Astrophys. J. 764 (2013) 35 [arXiv:1210.2721] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    M. Lisanti, L.E. Strigari, J.G. Wacker and R.H. Wechsler, The dark matter at the end of the galaxy, Phys. Rev. D 83 (2011) 023519 [arXiv:1010.4300] [INSPIRE].ADSGoogle Scholar
  61. [61]
    A. Ibarra, S. López Gehler and M. Pato, Dark matter constraints from box-shaped gamma-ray features, JCAP 07 (2012) 043 [arXiv:1205.0007] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    A. Ibarra, H.M. Lee, S. López Gehler, W.-I. Park and M. Pato, Gamma-ray boxes from axion-mediated dark matter, JCAP 05 (2013) 016 [arXiv:1303.6632] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    M.G. Walker, M. Mateo, E.W. Olszewski, J. Penarrubia, N.W. Evans and G. Gilmore, A universal mass profile for dwarf spheroidal galaxies, Astrophys. J. 704 (2009) 1274 [Erratum ibid. 710 (2010) 886] [arXiv:0906.0341] [INSPIRE].
  64. [64]
    LHC Higgs Cross section Working Group collaboration, J.R. Andersen et al., Handbook of LHC Higgs cross sections: 3. Higgs properties, arXiv:1307.1347 [INSPIRE].
  65. [65]
    R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244 [arXiv:1207.1303] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    M.R. Whalley, D. Bourilkov and R.C. Group, The Les Houches accord PDFs (LHAPDF) and LHAGLUE, in HERA and the LHC: a Workshop on the implications of HERA for LHC physics. Proceedings, Part B, (2005) [hep-ph/0508110] [INSPIRE].
  67. [67]
    A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    CMS collaboration, Search for the production of dark matter in association with top-quark pairs in the single-lepton final state in proton-proton collisions at \( \sqrt{s}=8 \) TeV, JHEP 06 (2015) 121 [arXiv:1504.03198] [INSPIRE].
  69. [69]
    CMS collaboration, Search for dark matter, extra dimensions and unparticles in monojet events in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 75 (2015) 235 [arXiv:1408.3583] [INSPIRE].
  70. [70]
    CMS collaboration, Search for dark matter and unparticles produced in association with a Z boson in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. D 93 (2016) 052011 [arXiv:1511.09375] [INSPIRE].
  71. [71]
    ATLAS collaboration, Search for dark matter produced in association with a Higgs boson decaying to two bottom quarks in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 93 (2016) 072007 [arXiv:1510.06218] [INSPIRE].
  72. [72]
    CMS collaboration, Search for resonances decaying to dijet final states at \( \sqrt{s}=8 \) TeV with scouting data, CMS-PAS-EXO-14-005, CERN, Geneva Switzerland (2014).
  73. [73]
    CMS collaboration, Search for diphoton resonances in the mass range from 150 to 850 GeV in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Lett. B 750 (2015) 494 [arXiv:1506.02301] [INSPIRE].
  74. [74]
    ATLAS collaboration, A search for \( t\overline{t} \) resonances using lepton-plus-jets events in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 08 (2015) 148 [arXiv:1505.07018] [INSPIRE].
  75. [75]
    CMS collaboration, Search for Standard Model production of four top quarks in the lepton + jets channel in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP 11 (2014) 154 [arXiv:1409.7339] [INSPIRE].
  76. [76]
    ATLAS collaboration, Search for dark matter in events with heavy quarks and missing transverse momentum in pp collisions with the ATLAS detector, Eur. Phys. J. C 75 (2015) 92 [arXiv:1410.4031] [INSPIRE].
  77. [77]
    CMS collaboration, Search for the production of dark matter in association with top-quark pairs in the single-lepton final state in proton-proton collisions at \( \sqrt{s}=8 \) TeV, JHEP 06 (2015) 121 [arXiv:1504.03198] [INSPIRE].
  78. [78]
    K. Cheung, K. Mawatari, E. Senaha, P.-Y. Tseng and T.-C. Yuan, The top window for dark matter, JHEP 10 (2010) 081 [arXiv:1009.0618] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  79. [79]
    T. Lin, E.W. Kolb and L.-T. Wang, Probing dark matter couplings to top and bottom quarks at the LHC, Phys. Rev. D 88 (2013) 063510 [arXiv:1303.6638] [INSPIRE].ADSGoogle Scholar
  80. [80]
    ATLAS collaboration, Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 75 (2015) 299 [arXiv:1502.01518] [INSPIRE].
  81. [81]
    CMS collaboration, Search for dark matter with jets and missing transverse energy at 13 TeV, CMS-PAS-EXO-15-003, CERN, Geneva Switzerland (2015).
  82. [82]
    ATLAS collaboration, Search for dark matter in events with a hadronically decaying W or Z boson and missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. Lett. 112 (2014) 041802 [arXiv:1309.4017] [INSPIRE].
  83. [83]
    ATLAS collaboration, Search for dark matter in events with a Z boson and missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 90 (2014) 012004 [arXiv:1404.0051] [INSPIRE].
  84. [84]
    CMS collaboration, Search for new physics in the V/jet + MET final state, CMS-PAS-EXO-12-055, CERN, Geneva Switzerland (2012).
  85. [85]
    ATLAS collaboration, Search for dark matter produced in association with a hadronically decaying vector boson in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector at the LHC, ATLAS-CONF-2015-080, CERN, Geneva Switzerland (2015).
  86. [86]
    ATLAS collaboration, Search for dark matter in events with missing transverse momentum and a Higgs boson decaying to two photons in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. Lett. 115 (2015) 131801 [arXiv:1506.01081] [INSPIRE].
  87. [87]
    ATLAS collaboration, Search for new phenomena in events with missing transverse momentum and a Higgs boson decaying to two photons in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-011, CERN, Geneva Switzerland (2016).
  88. [88]
    ATLAS collaboration, Search for dark matter in association with a Higgs boson decaying to b-quarks in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-019, CERN, Geneva Switzerland (2016).
  89. [89]
    D. Goncalves, F. Krauss, S. Kuttimalai and P. Maierhöfer, Boosting invisible searches via ZH: from the Higgs boson to dark matter simplified models, Phys. Rev. D 94 (2016) 053014 [arXiv:1605.08039] [INSPIRE].ADSGoogle Scholar
  90. [90]
    CMS collaboration, Search for narrow resonances in dijet final states at \( \sqrt{s}=8 \) TeV with the novel CMS technique of data scouting, Phys. Rev. Lett. 117 (2016) 031802 [arXiv:1604.08907] [INSPIRE].
  91. [91]
    CMS collaboration, Search for resonant tt production in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. D 93 (2016) 012001 [arXiv:1506.03062] [INSPIRE].
  92. [92]
    G. Bevilacqua and M. Worek, Constraining BSM physics at the LHC: four top final states with NLO accuracy in perturbative QCD, JHEP 07 (2012) 111 [arXiv:1206.3064] [INSPIRE].ADSCrossRefGoogle Scholar
  93. [93]
    CMS collaboration, Search for new physics in events with same-sign dileptons and jets in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP 01 (2014) 163 [Erratum ibid. 01 (2015) 014] [arXiv:1311.6736] [INSPIRE].
  94. [94]
    L. Beck, F. Blekman, D. Dobur, B. Fuks, J. Keaveney and K. Mawatari, Probing top-philic sgluons with LHC run I data, Phys. Lett. B 746 (2015) 48 [arXiv:1501.07580] [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    N. Greiner, K. Kong, J.-C. Park, S.C. Park and J.-C. Winter, Model-independent production of a top-philic resonance at the LHC, JHEP 04 (2015) 029 [arXiv:1410.6099] [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    C. Arina, E. Del Nobile and P. Panci, Dark matter with pseudoscalar-mediated interactions explains the DAMA signal and the galactic center excess, Phys. Rev. Lett. 114 (2015) 011301 [arXiv:1406.5542] [INSPIRE].ADSCrossRefGoogle Scholar
  97. [97]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefGoogle Scholar
  98. [98]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  99. [99]
    C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer and T. Reiter, UFO — the Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].ADSCrossRefGoogle Scholar
  100. [100]
    J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P.M. Nadolsky and W.K. Tung, New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].ADSCrossRefGoogle Scholar
  101. [101]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefGoogle Scholar
  102. [102]
    R. Field, Min-bias and the underlying event at the LHC, Acta Phys. Polon. B 42 (2011) 2631 [arXiv:1110.5530] [INSPIRE].CrossRefGoogle Scholar
  103. [103]
    M.L. Mangano, M. Moretti, F. Piccinini and M. Treccani, Matching matrix elements and shower evolution for top-quark production in hadronic collisions, JHEP 01 (2007) 013 [hep-ph/0611129] [INSPIRE].ADSCrossRefGoogle Scholar
  104. [104]
    J. Alwall, S. de Visscher and F. Maltoni, QCD radiation in the production of heavy colored particles at the LHC, JHEP 02 (2009) 017 [arXiv:0810.5350] [INSPIRE].ADSCrossRefGoogle Scholar
  105. [105]
    J. Guo, E. Conte and B. Fuks, MadAnalysis5 implementation of the CMS monojet search (EXO-12-048), [INSPIRE].
  106. [106]
    B. Fuks and A. Martini, MadAnalysis5 implementation of the CMS search for dark matter production with top quark pairs in the single lepton channel (CMS-B2G-14-004), [INSPIRE].
  107. [107]
    Y. Bai, H.-C. Cheng, J. Gallicchio and J. Gu, Stop the top background of the stop search, JHEP 07 (2012) 110 [arXiv:1203.4813] [INSPIRE].ADSCrossRefGoogle Scholar
  108. [108]
    M. Beltrán, D. Hooper, E.W. Kolb, Z.A.C. Krusberg and T.M.P. Tait, Maverick dark matter at colliders, JHEP 09 (2010) 037 [arXiv:1002.4137] [INSPIRE].ADSCrossRefGoogle Scholar
  109. [109]
    J. Goodman, M. Ibe, A. Rajaraman, W. Shepherd, T.M.P. Tait and H.-B. Yu, Constraints on dark matter from colliders, Phys. Rev. D 82 (2010) 116010 [arXiv:1008.1783] [INSPIRE].ADSGoogle Scholar
  110. [110]
    J. Goodman, M. Ibe, A. Rajaraman, W. Shepherd, T.M.P. Tait and H.-B. Yu, Constraints on light Majorana dark matter from colliders, Phys. Lett. B 695 (2011) 185 [arXiv:1005.1286] [INSPIRE].ADSCrossRefGoogle Scholar
  111. [111]
    Y. Bai, P.J. Fox and R. Harnik, The Tevatron at the frontier of dark matter direct detection, JHEP 12 (2010) 048 [arXiv:1005.3797] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Chiara Arina
    • 1
  • Mihailo Backović
    • 1
  • Eric Conte
    • 2
  • Benjamin Fuks
    • 3
    • 4
  • Jun Guo
    • 5
    • 6
  • Jan Heisig
    • 7
  • Benoît Hespel
    • 1
  • Michael Krämer
    • 7
  • Fabio Maltoni
    • 1
  • Antony Martini
    • 1
  • Kentarou Mawatari
    • 8
    • 9
  • Mathieu Pellen
    • 10
  • Eleni Vryonidou
    • 1
  1. 1.Centre for Cosmology, Particle Physics and Phenomenology (CP3)Université catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.Groupe de Recherche de Physique des Hautes Énergies (GRPHE)Université de Haute-AlsaceColmar CedexFrance
  3. 3.Sorbonne Universités, UPMC Univ. Paris 06, UMR 7589, LPTHEParisFrance
  4. 4.CNRS, UMR 7589, LPTHEParisFrance
  5. 5.State Key Laboratory of Theoretical Physics, Institute of Theoretical PhysicsChinese Academy of SciencesBeijingP.R. China
  6. 6.Institut Pluridisciplinaire Hubert Curien/Département Recherches Subatomiques, Université de Strasbourg/CNRS-IN2P3StrasbourgFrance
  7. 7.Institute for Theoretical Particle Physics and CosmologyRWTH Aachen UniversityAachenGermany
  8. 8.Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3GrenobleFrance
  9. 9.Theoretische Natuurkunde and IIHE/ELEM, Vrije Universiteit Brussel and International Solvay InstitutesBrusselsBelgium
  10. 10.Universität Würzburg, Institut für Theoretische Physik und AstrophysikWürzburgGermany

Personalised recommendations