Journal of High Energy Physics

, 2016:91 | Cite as

Aspects of superconformal multiplets in D > 4

  • Matthew Buican
  • Joseph Hayling
  • Constantinos Papageorgakis
Open Access
Regular Article - Theoretical Physics

Abstract

We explicitly construct and list all unitary superconformal multiplets, along with their index contributions, in five and six dimensions. From this data, we uncover various unifying themes in the representation theory of five- and six-dimensional superconformal field theories. At the same time, we provide a detailed argument for the complete classification of unitary irreducible representations in five dimensions using a combination of physical and mathematical techniques.

Keywords

Conformal and W Symmetry Conformal Field Theory Extended Supersymmetry 

Supplementary material

13130_2016_5032_MOESM1_ESM.nb (174 kb)
ESM 1(NB 174 kb)

References

  1. [1]
    C. Montonen and D.I. Olive, Magnetic Monopoles as Gauge Particles?, Phys. Lett. B 72 (1977) 117 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    P. Goddard, J. Nuyts and D.I. Olive, Gauge Theories and Magnetic Charge, Nucl. Phys. B 125 (1977) 1 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    E. Witten and D.I. Olive, Supersymmetry Algebras That Include Topological Charges, Phys. Lett. B78 (1978) 97.ADSCrossRefGoogle Scholar
  4. [4]
    N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    P.C. Argyres and N. Seiberg, S-duality in N = 2 supersymmetric gauge theories, JHEP 12 (2007) 088 [arXiv:0711.0054] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    D. Gaiotto, N = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    D. Green, Z. Komargodski, N. Seiberg, Y. Tachikawa and B. Wecht, Exactly Marginal Deformations and Global Symmetries, JHEP 06 (2010) 106 [arXiv:1005.3546] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    N. Seiberg, Electric-magnetic duality in supersymmetric nonAbelian gauge theories, Nucl. Phys. B 435 (1995) 129 [hep-th/9411149] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    K.A. Intriligator and N. Seiberg, Mirror symmetry in three-dimensional gauge theories, Phys. Lett. B 387 (1996) 513 [hep-th/9607207] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    W. Nahm, Supersymmetries and their Representations, Nucl. Phys. B 135 (1978) 149 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    C. Romelsberger, Counting chiral primaries in N = 1, D = 4 superconformal field theories, Nucl. Phys. B 747 (2006) 329 [hep-th/0510060] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    J. Kinney, J.M. Maldacena, S. Minwalla and S. Raju, An index for 4 dimensional super conformal theories, Commun. Math. Phys. 275 (2007) 209 [hep-th/0510251] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    J. Bhattacharya, S. Bhattacharyya, S. Minwalla and S. Raju, Indices for Superconformal Field Theories in 3, 5 and 6 Dimensions, JHEP 02 (2008) 064 [arXiv:0801.1435] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    C. Beem, L. Rastelli and B.C. van Rees, \( \mathcal{W} \) symmetry in six dimensions, JHEP 05 (2015) 017 [arXiv:1404.1079] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    C. Beem, M. Lemos, P. Liendo, W. Peelaers, L. Rastelli and B.C. van Rees, Infinite Chiral Symmetry in Four Dimensions, Commun. Math. Phys. 336 (2015) 1359 [arXiv:1312.5344] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    C. Cordova, T.T. Dumitrescu and K. Intriligator, Anomalies, Renormalization Group Flows and the a-Theorem in Six-Dimensional (1, 0) Theories, JHEP 10 (2016) 080 [arXiv:1506.03807] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    J. Louis and S. Lüst, Supersymmetric AdS 7 backgrounds in half-maximal supergravity and marginal operators of (1, 0) SCFTs, JHEP 10 (2015) 120 [arXiv:1506.08040] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    C. Cordova, T.T. Dumitrescu and K. Intriligator, Deformations of Superconformal Theories, arXiv:1602.01217 [INSPIRE].
  19. [19]
    C. Beem, M. Lemos, L. Rastelli and B.C. van Rees, The (2, 0) superconformal bootstrap, Phys. Rev. D 93 (2016) 025016 [arXiv:1507.05637] [INSPIRE].ADSMathSciNetGoogle Scholar
  20. [20]
    S. Minwalla, Restrictions imposed by superconformal invariance on quantum field theories, Adv. Theor. Math. Phys. 2 (1998) 781 [hep-th/9712074] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    V.K. Dobrev and V.B. Petkova, All Positive Energy Unitary Irreducible Representations of Extended Conformal Supersymmetry, Phys. Lett. B 162 (1985) 127 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    V.K. Dobrev and V.B. Petkova, ON the group theoretical approach to extended conformal supersymmetry: classification of multiplets, Lett. Math. Phys. 9 (1985) 287 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    V.K. Dobrev and V.B. Petkova, Group Theoretical Approach to Extended Conformal Supersymmetry: Function Space Realizations and Invariant Differential Operators, Fortsch. Phys. 35 (1987) 537 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    V.K. Dobrev, Positive energy unitary irreducible representations of D = 6 conformal supersymmetry, J. Phys. A 35 (2002) 7079 [hep-th/0201076] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  25. [25]
    E. Witten, Some comments on string dynamics, in proceedings of Future perspectives in string theory (Strings95), Los Angeles, U.S.A., 13-18 March 1995, hep-th/9507121 [INSPIRE].
  26. [26]
    N. Seiberg, Five-dimensional SUSY field theories, nontrivial fixed points and string dynamics, Phys. Lett. B 388 (1996) 753 [hep-th/9608111] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    D.R. Morrison and N. Seiberg, Extremal transitions and five-dimensional supersymmetric field theories, Nucl. Phys. B 483 (1997) 229 [hep-th/9609070] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    M.R. Douglas, S.H. Katz and C. Vafa, Small instantons, Del Pezzo surfaces and type-I-prime theory, Nucl. Phys. B 497 (1997) 155 [hep-th/9609071] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    K.A. Intriligator, D.R. Morrison and N. Seiberg, Five-dimensional supersymmetric gauge theories and degenerations of Calabi-Yau spaces, Nucl. Phys. B 497 (1997) 56 [hep-th/9702198] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    J.J. Heckman, D.R. Morrison, T. Rudelius and C. Vafa, Atomic Classification of 6D SCFTs, Fortsch. Phys. 63 (2015) 468 [arXiv:1502.05405] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  31. [31]
    L. Bhardwaj, Classification of 6d \( \mathcal{N}=\left(1,0\right) \) gauge theories, JHEP 11 (2015) 002 [arXiv:1502.06594] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    J. Maldacena and A. Zhiboedov, Constraining Conformal Field Theories with A Higher Spin Symmetry, J. Phys. A 46 (2013) 214011 [arXiv:1112.1016] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  33. [33]
    J. Maldacena and A. Zhiboedov, Constraining conformal field theories with a slightly broken higher spin symmetry, Class. Quant. Grav. 30 (2013) 104003 [arXiv:1204.3882] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    V. Alba and K. Diab, Constraining conformal field theories with a higher spin symmetry in d >3 dimensions, JHEP 03 (2016) 044 [arXiv:1510.02535] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    M. Buican, S. Giacomelli, T. Nishinaka and C. Papageorgakis, Argyres-Douglas Theories and S-duality, JHEP 02 (2015) 185 [arXiv:1411.6026] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    M. Del Zotto, C. Vafa and D. Xie, Geometric engineering, mirror symmetry and \( 6{\mathrm{d}}_{\left(1,0\right)}\to\ 4{\mathrm{d}}_{\left(\mathcal{N}=2\right)} \), JHEP 11 (2015) 123 [arXiv:1504.08348] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    M. Buican and T. Nishinaka, Conformal Manifolds in Four Dimensions and Chiral Algebras, J. Phys. A 49 (2016) 465401 [arXiv:1603.00887] [INSPIRE].ADSMATHGoogle Scholar
  38. [38]
    C. Córdova, Deformations of Superconformal Field Theories, Autumn Symposium on String/M Theory 2014, Princeton University Seminar 2014, http://media.kias.re.kr/detailPage.do?pro_seq=564&type=p.
  39. [39]
    F.A. Dolan and H. Osborn, On short and semi-short representations for four-dimensional superconformal symmetry, Annals Phys. 307 (2003) 41 [hep-th/0209056] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  40. [40]
    F.A. Dolan, Character formulae and partition functions in higher dimensional conformal field theory, J. Math. Phys. 47 (2006) 062303 [hep-th/0508031] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  41. [41]
    J. Penedones, E. Trevisani and M. Yamazaki, Recursion Relations for Conformal Blocks, JHEP 09 (2016) 070 [arXiv:1509.00428] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    M. Yamazaki, Comments on Determinant Formulas for General CFTs, JHEP 10 (2016) 035 [arXiv:1601.04072] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    Y. Oshima and M. Yamazaki, Determinant Formula for Parabolic Verma Modules of Lie Superalgebras, arXiv:1603.06705 [INSPIRE].
  44. [44]
    C. Cordova, T.T. Dumitrescu and K. Intriligator, Multiplets of superconformal symmetry in diverse dimensions, to appear.Google Scholar
  45. [45]
    K. Intriligator, Anomalies, RG flows, and the a-theorem in six-dimensional (1, 0) theories, in proceedings of Strings 2015, https://strings2015.icts.res.in.
  46. [46]
    T. Dumitrescu, Anomalies, RG Flows, and the a-theorem in 6dPart I, in proceedings of 2015 Simons Summer Workshop, http://scgp.stonybrook.edu/archives/category/videos.
  47. [47]
    C. Córdova, Anomalies, RG Flows, and the a-theorem in 6dPart II, in proceedings of 2015 Simons Summer Workshop, http://scgp.stonybrook.edu/archives/category/videos.
  48. [48]
    C. Córdova, Anomalies RG-Flows and the a-Theorem in Six-Dimensions, London Triangle Seminar, December 2015.Google Scholar
  49. [49]
    M. Bianchi, F.A. Dolan, P.J. Heslop and H. Osborn, N = 4 superconformal characters and partition functions, Nucl. Phys. B 767 (2007) 163 [hep-th/0609179] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  50. [50]
    H.-C. Kim, S.-S. Kim and K. Lee, 5-dim Superconformal Index with Enhanced En Global Symmetry, JHEP 10 (2012) 142 [arXiv:1206.6781] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    D. Rodr´ıguez-Gómez and G. Zafrir, On the 5d instanton index as a Hilbert series, Nucl. Phys. B 878 (2014) 1 [arXiv:1305.5684] [INSPIRE].
  52. [52]
    Y. Tachikawa, Instanton operators and symmetry enhancement in 5d supersymmetric gauge theories, PTEP 2015 (2015) 043B06 [arXiv:1501.01031] [INSPIRE].
  53. [53]
    V.G. Kac, A Sketch of Lie Superalgebra Theory, Commun. Math. Phys. 53 (1977) 31 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  54. [54]
    L. Frappat, P. Sorba and A. Sciarrino, Dictionary on Lie superalgebras, hep-th/9607161 [INSPIRE].
  55. [55]
    C. Hwang, J. Kim, S. Kim and J. Park, General instanton counting and 5d SCFT, JHEP 07 (2015) 063 [Addendum ibid. 04 (2016) 094] [arXiv:1406.6793] [INSPIRE].
  56. [56]
    A. Passias and A. Tomasiello, Spin-2 spectrum of six-dimensional field theories, arXiv:1604.04286 [INSPIRE].
  57. [57]
    P.S. Howe and A. Umerski, Anomaly multiplets in six-dimensions and ten-dimensions, Phys. Lett. B 198 (1987) 57 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  58. [58]
    S.M. Kuzenko, J. Novak and I.B. Samsonov, The anomalous current multiplet in 6D minimal supersymmetry, JHEP 02 (2016) 132 [arXiv:1511.06582] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  59. [59]
    M. Buican, Minimal Distances Between SCFTs, JHEP 01 (2014) 155 [arXiv:1311.1276] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    M. Buican, T. Nishinaka and C. Papageorgakis, Constraints on chiral operators in \( \mathcal{N}=2 \) SCFTs, JHEP 12 (2014) 095 [arXiv:1407.2835] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    K. Ohmori, H. Shimizu, Y. Tachikawa and K. Yonekura, Anomaly polynomial of general 6d SCFTs, PTEP 2014 (2014) 103B07 [arXiv:1408.5572] [INSPIRE].
  62. [62]
    K. Intriligator, 6d, \( \mathcal{N}=\left(1,0\right) \) Coulomb branch anomaly matching, JHEP 10 (2014) 162 [arXiv:1408.6745] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    J. Fuchs and C. Schweigert, Symmetries, Lie Algebras and Representations: A Graduate Course for Physicists, Cambridge University Press (2003).Google Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Matthew Buican
    • 1
    • 2
  • Joseph Hayling
    • 1
  • Constantinos Papageorgakis
    • 1
  1. 1.CRST and School of Physics and AstronomyQueen Mary University of LondonLondonU.K.
  2. 2.Enrico Fermi Institute and Department of PhysicsThe University of ChicagoChicagoU.S.A.

Personalised recommendations