Advertisement

Journal of High Energy Physics

, 2016:90 | Cite as

Scale factor duality for conformal cyclic cosmologies

  • U. Camara da SilvaEmail author
  • A. L. Alves Lima
  • G. M. Sotkov
Open Access
Regular Article - Theoretical Physics

Abstract

The scale factor duality is a symmetry of dilaton gravity which is known to lead to pre-big-bang cosmologies. A conformal time version of the scale factor duality (SFD) was recently implemented as a UV/IR symmetry between decelerated and accelerated phases of the post-big-bang evolution within Einstein gravity coupled to a scalar field. The problem investigated in the present paper concerns the employment of the conformal time SFD methods to the construction of pre-big-bang and cyclic extensions of these models. We demonstrate that each big-bang model gives rise to two qualitatively different pre-big-bang evolutions: a contraction/expansion SFD model and Penrose’s Conformal Cyclic Cosmology (CCC). A few examples of SFD symmetric cyclic universes involving certain gauged Kähler sigma models minimally coupled to Einstein gravity are studied. We also describe the specific SFD features of the thermodynamics and the conditions for validity of the generalized second law in the case of Gauss-Bonnet (GB) extension of these selected CCC models.

Keywords

Cosmology of Theories beyond the SM Space-Time Symmetries Classical Theories of Gravity 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XX. Constraints on inflation, Astron. Astrophys. 594 (2016) A20 [arXiv:1502.02114] [INSPIRE].
  2. [2]
    G. ’t Hooft, Local conformal symmetry: the missing symmetry component for space and time, arXiv:1410.6675 [INSPIRE].
  3. [3]
    G. ’t Hooft, Singularities, horizons, firewalls and local conformal symmetry, arXiv:1511.04427 [INSPIRE].
  4. [4]
    K. Hinterbichler and J. Khoury, The pseudo-conformal universe: scale invariance from spontaneous breaking of conformal symmetry, JCAP 04 (2012) 023 [arXiv:1106.1428] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    C. Csáki, N. Kaloper, J. Serra and J. Terning, Inflation from broken scale invariance, Phys. Rev. Lett. 113 (2014) 161302 [arXiv:1406.5192] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    I. Bars, P. Steinhardt and N. Turok, Local conformal symmetry in physics and cosmology, Phys. Rev. D 89 (2014) 043515 [arXiv:1307.1848] [INSPIRE].ADSGoogle Scholar
  7. [7]
    R. Kallosh, A. Linde and T. Rube, General inflaton potentials in supergravity, Phys. Rev. D 83 (2011) 043507 [arXiv:1011.5945] [INSPIRE].ADSGoogle Scholar
  8. [8]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, De Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  9. [9]
    R. Kallosh and A. Linde, Universality class in conformal inflation, JCAP 07 (2013) 002 [arXiv:1306.5220] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    R. Kallosh, A. Linde and D. Roest, Large field inflation and double α-attractors, JHEP 08 (2014) 052 [arXiv:1405.3646] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    R. Kallosh and A. Linde, Escher in the Sky, Comptes Rendus Physique 16 (2015) 914 [arXiv:1503.06785] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    S. Ferrara, R. Kallosh, A. Linde and M. Porrati, Minimal supergravity models of inflation, Phys. Rev. D 88 (2013) 085038 [arXiv:1307.7696] [INSPIRE].ADSGoogle Scholar
  13. [13]
    S. Ferrara, R. Kallosh, A. Linde, A. Marrani and A. Van Proeyen, Superconformal symmetry, NMSSM and inflation, Phys. Rev. D 83 (2011) 025008 [arXiv:1008.2942] [INSPIRE].ADSGoogle Scholar
  14. [14]
    G. Veneziano, Scale factor duality for classical and quantum strings, Phys. Lett. B 265 (1991) 287.ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    M. Gasperini and G. Veneziano, The pre-big bang scenario in string cosmology, Phys. Rept. 373 (2003) 1 [hep-th/0207130] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    J. Khoury, B.A. Ovrut, P.J. Steinhardt and N. Turok, The ekpyrotic universe: colliding branes and the origin of the hot big bang, Phys. Rev. D 64 (2001) 123522 [hep-th/0103239] [INSPIRE].ADSMathSciNetGoogle Scholar
  17. [17]
    R. Penrose, Cycles of time: an extraordinary new view of the universe, Random House, U.S.A. (2010).zbMATHGoogle Scholar
  18. [18]
    P.J. Steinhardt and N. Turok, Cosmic evolution in a cyclic universe, Phys. Rev. D 65 (2002) 126003 [hep-th/0111098] [INSPIRE].ADSMathSciNetGoogle Scholar
  19. [19]
    A.D. Linde, Inflationary theory versus ekpyrotic/cyclic scenario, talk give at the Conference on the Future of Theoretical Physics and Cosmology in Honor of Steven Hawking’s 60th birthday, January 7–10, Cambridge, U.K. (2002), hep-th/0205259 [INSPIRE].
  20. [20]
    J. Khoury, B.A. Ovrut, N. Seiberg, P.J. Steinhardt and N. Turok, From big crunch to big bang, Phys. Rev. D 65 (2002) 086007 [hep-th/0108187] [INSPIRE].ADSGoogle Scholar
  21. [21]
    G.N. Felder, A.V. Frolov, L. Kofman and A.D. Linde, Cosmology with negative potentials, Phys. Rev. D 66 (2002) 023507 [hep-th/0202017] [INSPIRE].ADSMathSciNetGoogle Scholar
  22. [22]
    A. Giveon, M. Porrati and E. Rabinovici, Target space duality in string theory, Phys. Rept. 244 (1994) 77 [hep-th/9401139] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    U. Camara da Silva, A.A. Lima and G.M. Sotkov, Scale factor self-dual cosmological models, JHEP 07 (2015) 017 [arXiv:1502.06497] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    M.P. Dabrowski, T. Stachowiak and M. Szydlowski, Phantom cosmologies, Phys. Rev. D 68 (2003) 103519 [hep-th/0307128] [INSPIRE].ADSGoogle Scholar
  25. [25]
    L.P. Chimento and R. Lazkoz, On the link between phantom and standard cosmologies, Phys. Rev. Lett. 91 (2003) 211301 [gr-qc/0307111] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    L.P. Chimento and W. Zimdahl, Duality invariance and cosmological dynamics, Int. J. Mod. Phys. D 17 (2008) 2229 [gr-qc/0609104] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    M. Gasperini and G. Veneziano, Inflation, deflation and frame independence in string cosmology, Mod. Phys. Lett. A 8 (1993) 3701 [hep-th/9309023] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    U.d. Camara, C.P. Constantinidis, A.L.A. Lima and G.M. Sotkov, Self-duality from new massive gravity holography, JHEP 05 (2013) 013 [arXiv:1302.5795] [INSPIRE].
  29. [29]
    U. Debnath, A. Banerjee and S. Chakraborty, Role of modified Chaplygin gas in accelerated universe, Class. Quant. Grav. 21 (2004) 5609 [gr-qc/0411015] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    H.B. Benaoum, Accelerated universe from modified Chaplygin gas and tachyonic fluid, hep-th/0205140 [INSPIRE].
  31. [31]
    J. Lu, D. Geng, L. Xu, Y. Wu and M. Liu, Reduced modified Chaplygin gas cosmology, JHEP 02 (2015) 071 [arXiv:1312.0779] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    V.G. Gurzadyan and R. Penrose, On CCC-predicted concentric low-variance circles in the CMB sky, Eur. Phys. J. Plus 128 (2013) 22 [arXiv:1302.5162] [INSPIRE].CrossRefGoogle Scholar
  33. [33]
    E. Newman, A fundamental solution to the CCC equations, Gen. Rel. Grav. 46 (2014) 1717 [arXiv:1309.7271] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  34. [34]
    P. Tod, The equations of CCC, arXiv:1309.7248 [INSPIRE].
  35. [35]
    R. Kallosh, Planck 2013 and superconformal symmetry, arXiv:1402.0527 [INSPIRE].
  36. [36]
    K.A. Meissner and P. Nurowski, Conformal transformations and the beginning of the Universe, arXiv:1506.03280 [INSPIRE].
  37. [37]
    M. Gasperini and G. Veneziano, Pre-big bang in string cosmology, Astropart. Phys. 1 (1993) 317 [hep-th/9211021] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    G.W. Gibbons and S.W. Hawking, Cosmological event horizons, thermodynamics, and particle creation, Phys. Rev. D 15 (1977) 2738.ADSMathSciNetGoogle Scholar
  39. [39]
    R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) R3427 [gr-qc/9307038] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  40. [40]
    R. Bousso and N. Engelhardt, Generalized second law for cosmology, Phys. Rev. D 93 (2016) 024025 [arXiv:1510.02099] [INSPIRE].ADSMathSciNetGoogle Scholar
  41. [41]
    R. Bousso and N. Engelhardt, New area law in general relativity, Phys. Rev. Lett. 115 (2015) 081301 [arXiv:1504.07627] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    S. Weinberg, Gravitation and cosmology: principles and applications of the general theory of relativity, volume 1, Wiley, New York U.S.A. (1972).Google Scholar
  43. [43]
    T. Jacobson, Thermodynamics of space-time: the Einstein equation of state, Phys. Rev. Lett. 75 (1995) 1260 [gr-qc/9504004] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    G.M. Sotkov, A.L.A. Lima and U. Camara da Silva, On the thermodynamics of scale factor dual Universes, arXiv:1609.00393 [INSPIRE].
  45. [45]
    R.-G. Cai and S.P. Kim, First law of thermodynamics and Friedmann equations of Friedmann-Robertson-Walker universe, JHEP 02 (2005) 050 [hep-th/0501055] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    M. Akbar and R.-G. Cai, Thermodynamic behavior of Friedmann equations at apparent horizon of FRW universe, Phys. Rev. D 75 (2007) 084003 [hep-th/0609128] [INSPIRE].ADSGoogle Scholar
  47. [47]
    R.-G. Cai and Y.S. Myung, Holography and entropy bounds in Gauss-Bonnet gravity, Phys. Lett. B 559 (2003) 60 [hep-th/0210300] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    A. Sinha, On higher derivative gravity, c-theorems and cosmology, Class. Quant. Grav. 28 (2011) 085002 [arXiv:1008.4315] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    U. Camara dS, A.A. Lima and G.M. Sotkov, Energy density bounds in cubic quasi-topological cosmology, arXiv:1304.4185 [INSPIRE].
  50. [50]
    R. Brandenberger and P. Peter, Bouncing cosmologies: progress and problems, arXiv:1603.05834 [INSPIRE].
  51. [51]
    R. Kallosh, J. U. Kang, A. Linde and V. Mukhanov, The new ekpyrotic ghost, JCAP 04 (2008) 018 [arXiv:0712.2040].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    S.D. Hsu, A. Jenkins and M.B. Wise, Gradient instability for w < −1, Phys. Lett. B 597 (2004) 270 [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    V.A. Belinskii, I.M. Khalatnikov and E.M. Lifshitz, Oscillatory approach to a singular point in the relativistic cosmology, Adv. Phys. 19 (1970) 525.ADSCrossRefGoogle Scholar
  54. [54]
    T. Damour, M. Henneaux and H. Nicolai, Cosmological billiards, Class. Quant. Grav. 20 (2003) R145 [hep-th/0212256] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  55. [55]
    J.-L. Lehners, Ekpyrotic and cyclic cosmology, Phys. Rept. 465 (2008) 223 [arXiv:0806.1245] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  56. [56]
    E. I. Buchbinder, J. Khoury and B.A. Ovrut, New ekpyrotic cosmology, Phys. Rev. D 76 (2007) 123503 [hep-th/0702154] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  57. [57]
    S.M. Carroll, M. Hoffman and M. Trodden, Can the dark energy equation-of-state parameter w be less than −1?, Phys. Rev. D 68 (2003) 023509 [astro-ph/0301273] [INSPIRE].ADSGoogle Scholar
  58. [58]
    R. Brustein, M. Gasperini and G. Veneziano, Duality in cosmological perturbation theory, Phys. Lett. B 431 (1998) 277 [hep-th/9803018] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  59. [59]
    I. Antoniadis, P.O. Mazur and E. Mottola, Conformal invariance and cosmic background radiation, Phys. Rev. Lett. 79 (1997) 14 [astro-ph/9611208] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    I. Antoniadis, P.O. Mazur and E. Mottola, Conformal Invariance, Dark Energy and CMB Non-Gaussianity, JCAP 09 (2012) 024 [arXiv:1103.4164] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    M. Libanov, V. Rubakov and G. Rubtsov, Towards conformal cosmology, JETP Lett. 102 (2015) 561 [arXiv:1508.07728] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    F. Larsen, J.P. van der Schaar and R.G. Leigh, De Sitter holography and the cosmic microwave background, JHEP 04 (2002) 047 [hep-th/0202127] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  63. [63]
    J.P. van der Schaar, Inflationary perturbations from deformed CFT, JHEP 01 (2004) 070 [hep-th/0307271] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  64. [64]
    P. McFadden and K. Skenderis, The holographic universe, J. Phys. Conf. Ser. 222 (2010) 012007 [arXiv:1001.2007] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    A. Strominger, The dS/CFT correspondence, JHEP 10 (2001) 034 [hep-th/0106113] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  66. [66]
    A. Strominger, Inflation and the dS/CFT correspondence, JHEP 11 (2001) 049 [hep-th/0110087] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • U. Camara da Silva
    • 1
    Email author
  • A. L. Alves Lima
    • 1
  • G. M. Sotkov
    • 1
  1. 1.Departamento de Física — CCEUniversidade Federal de Espirito SantoVitoriaBrazil

Personalised recommendations