The complexity of identifying Ryu-Takayanagi surfaces in AdS3/CFT2

Abstract

We present a constructive algorithm for the determination of Ryu-Takayanagi surfaces in AdS3/CFT2 which exploits previously noted connections between holographic entanglement entropy and max-flow/min-cut. We then characterize its complexity as a polynomial time algorithm.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  2. [2]

    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  3. [3]

    I. Agol, J. Hass and W. Thurston, The computational complexity of knot genus and spanning area, Trans. Amer. Math. Soc. 358 (2006) 3821 [math/0205057].

  4. [4]

    M. Freedman and M. Headrick, Bit threads and holographic entanglement, arXiv:1604.00354 [INSPIRE].

  5. [5]

    N. Bao, S. Nezami, H. Ooguri, B. Stoica, J. Sully and M. Walter, The holographic entropy cone, JHEP 09 (2015) 130 [arXiv:1505.07839] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  6. [6]

    G. Chartrand and O.R. Oellermann, Applied and algorithmic graph theory, McGraw-Hill, U.S.A. (1993).

    Google Scholar 

  7. [7]

    W. Ballmann, Lectures on spaces of nonpositive curvature, Springer, Germany (1995).

    Book  MATH  Google Scholar 

  8. [8]

    P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 06 (2004) P06002 [hep-th/0405152] [INSPIRE].

  9. [9]

    C. Holzhey, F. Larsen and F. Wilczek, Geometric and renormalized entropy in conformal field theory, Nucl. Phys. B 424 (1994) 443 [hep-th/9403108] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  10. [10]

    H. Maxfield, Entanglement entropy in three dimensional gravity, JHEP 04 (2015) 031 [arXiv:1412.0687] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  11. [11]

    N. Lashkari, M.B. McDermott and M. Van Raamsdonk, Gravitational dynamics from entanglement ‘thermodynamics’, JHEP 04 (2014) 195 [arXiv:1308.3716] [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    T. Faulkner, M. Guica, T. Hartman, R.C. Myers and M. Van Raamsdonk, Gravitation from entanglement in holographic CFTs, JHEP 03 (2014) 051 [arXiv:1312.7856] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  13. [13]

    B. Swingle and M. Van Raamsdonk, Universality of gravity from entanglement, arXiv:1405.2933 [INSPIRE].

  14. [14]

    M. Headrick and V. Hubeny, to appear.

  15. [15]

    V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  16. [16]

    A.C. Wall, Maximin surfaces and the strong subadditivity of the covariant holographic entanglement entropy, Class. Quant. Grav. 31 (2014) 225007 [arXiv:1211.3494] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  17. [17]

    M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Chatwin-Davies.

Additional information

ArXiv ePrint: 1609.01727

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bao, N., Chatwin-Davies, A. The complexity of identifying Ryu-Takayanagi surfaces in AdS3/CFT2 . J. High Energ. Phys. 2016, 34 (2016). https://doi.org/10.1007/JHEP11(2016)034

Download citation

Keywords

  • AdS-CFT Correspondence
  • Classical Theories of Gravity