Journal of High Energy Physics

, 2016:29 | Cite as

Fundamental partial compositeness

  • Francesco Sannino
  • Alessandro Strumia
  • Andrea TesiEmail author
  • Elena Vigiani
Open Access
Regular Article - Theoretical Physics


We construct renormalizable Standard Model extensions, valid up to the Planck scale, that give a composite Higgs from a new fundamental strong force acting on fermions and scalars. Yukawa interactions of these particles with Standard Model fermions realize the partial compositeness scenario. Under certain assumptions on the dynamics of the scalars, successful models exist because gauge quantum numbers of Standard Model fermions admit a minimal enough ‘square root’. Furthermore, right-handed SM fermions have an SU(2) R -like structure, yielding a custodially-protected composite Higgs. Baryon and lepton numbers arise accidentally. Standard Model fermions acquire mass at tree level, while the Higgs potential and flavor violations are generated by quantum corrections. We further discuss accidental symmetries and other dynamical features stemming from the new strongly interacting scalars. If the same phenomenology can be obtained from models without our elementary scalars, they would reappear as composite states.


Beyond Standard Model Technicolor and Composite Models 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    D.B. Kaplan and H. Georgi, SU(2) × U(1) Breaking by Vacuum Misalignment, Phys. Lett. B 136 (1984) 183 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs Scalars, Phys. Lett. B 136 (1984) 187 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    M.J. Dugan, H. Georgi and D.B. Kaplan, Anatomy of a Composite Higgs Model, Nucl. Phys. B 254 (1985) 299 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    K. Agashe, R. Contino and A. Pomarol, The Minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].
  5. [5]
    R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [INSPIRE].
  6. [6]
    G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The Strongly-Interacting Light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].
  7. [7]
    T. Alanne, H. Gertov, F. Sannino and K. Tuominen, Elementary Goldstone Higgs boson and dark matter, Phys. Rev. D 91 (2015) 095021 [arXiv:1411.6132] [INSPIRE].ADSGoogle Scholar
  8. [8]
    H. Gertov, A. Meroni, E. Molinaro and F. Sannino, Theory and phenomenology of the elementary Goldstone Higgs boson, Phys. Rev. D 92 (2015) 095003 [arXiv:1507.06666] [INSPIRE].ADSGoogle Scholar
  9. [9]
    G. Panico and A. Wulzer, The Composite Nambu-Goldstone Higgs, Lect. Notes Phys. 913 (2016) pp.1-316 [arXiv:1506.01961] [INSPIRE].
  10. [10]
    D.B. Kaplan, Flavor at SSC energies: A New mechanism for dynamically generated fermion masses, Nucl. Phys. B 365 (1991) 259 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    R. Contino and A. Pomarol, Holography for fermions, JHEP 11 (2004) 058 [hep-th/0406257] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    R. Contino, T. Kramer, M. Son and R. Sundrum, Warped/composite phenomenology simplified, JHEP 05 (2007) 074 [hep-ph/0612180] [INSPIRE].
  13. [13]
    C. Pica and F. Sannino, Anomalous Dimensions of Conformal Baryons, Phys. Rev. D 94 (2016) 071702 [arXiv:1604.02572] [INSPIRE].ADSGoogle Scholar
  14. [14]
    M.A. Luty and T. Okui, Conformal technicolor, JHEP 09 (2006) 070 [hep-ph/0409274] [INSPIRE].
  15. [15]
    R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP 12 (2008) 031 [arXiv:0807.0004] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    D. Poland, D. Simmons-Duffin and A. Vichi, Carving Out the Space of 4D CFTs, JHEP 05 (2012) 110 [arXiv:1109.5176] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    E.H. Simmons, Phenomenology of a Technicolor Model With Heavy Scalar Doublet, Nucl. Phys. B 312 (1989) 253 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    C.D. Carone and E.H. Simmons, Oblique corrections in technicolor with a scalar, Nucl. Phys. B 397 (1993) 591 [hep-ph/9207273] [INSPIRE].
  19. [19]
    V. Hemmige and E.H. Simmons, Current bounds on technicolor with scalars, Phys. Lett. B 518 (2001) 72 [hep-ph/0107117] [INSPIRE].
  20. [20]
    C.T. Hill and E.H. Simmons, Strong dynamics and electroweak symmetry breaking, Phys. Rept. 381 (2003) 235 [Erratum ibid. 390 (2004) 553] [hep-ph/0203079] [INSPIRE].
  21. [21]
    M. Antola, M. Heikinheimo, F. Sannino and K. Tuominen, Unnatural Origin of Fermion Masses for Technicolor, JHEP 03 (2010) 050 [arXiv:0910.3681] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  22. [22]
    B.A. Dobrescu and E.H. Simmons, Top-bottom splitting in technicolor with composite scalars, Phys. Rev. D 59 (1999) 015014 [hep-ph/9807469] [INSPIRE].
  23. [23]
    M. Antola, S. Di Chiara, F. Sannino and K. Tuominen, Minimal Super Technicolor, Eur. Phys. J. C 71 (2011) 1784 [arXiv:1001.2040] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    A. Strumia, Theory Summary of Moriond Electro-Weak 2015, arXiv:1504.08331 [INSPIRE].
  25. [25]
    O. Antipin, M. Redi and A. Strumia, Dynamical generation of the weak and Dark Matter scales from strong interactions, JHEP 01 (2015) 157 [arXiv:1410.1817] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    H. Ishida, S. Matsuzaki and Y. Yamaguchi, Invisible Axion-Like Dark Matter from Electroweak Bosonic Seesaw, arXiv:1604.07712 [INSPIRE].
  27. [27]
    J. Barnard, T. Gherghetta and T.S. Ray, UV descriptions of composite Higgs models without elementary scalars, JHEP 02 (2014) 002 [arXiv:1311.6562] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    G. Ferretti and D. Karateev, Fermionic UV completions of Composite Higgs models, JHEP 03 (2014) 077 [arXiv:1312.5330] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    L. Vecchi, A dangerous irrelevant UV-completion of the composite Higgs, arXiv:1506.00623 [INSPIRE].
  30. [30]
    G. Ferretti, Gauge theories of Partial Compositeness: Scenarios for Run-II of the LHC, JHEP 06 (2016) 107 [arXiv:1604.06467] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    F. Caracciolo, A. Parolini and M. Serone, UV Completions of Composite Higgs Models with Partial Compositeness, JHEP 02 (2013) 066 [arXiv:1211.7290] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    J. Krog, M. Mojaza and F. Sannino, Four-Fermion Limit of Gauge-Yukawa Theories, Phys. Rev. D 92 (2015) 085043 [arXiv:1506.02642] [INSPIRE].ADSMathSciNetGoogle Scholar
  33. [33]
    G.F. Giudice, G. Isidori, A. Salvio and A. Strumia, Softened Gravity and the Extension of the Standard Model up to Infinite Energy, JHEP 02 (2015) 137 [arXiv:1412.2769] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    D.D. Dietrich and F. Sannino, Conformal window of SU(N ) gauge theories with fermions in higher dimensional representations, Phys. Rev. D 75 (2007) 085018 [hep-ph/0611341] [INSPIRE].
  35. [35]
    F. Sannino, Conformal Windows of SP(2N) and SO(N ) Gauge Theories, Phys. Rev. D 79 (2009) 096007 [arXiv:0902.3494] [INSPIRE].ADSGoogle Scholar
  36. [36]
    E.H. Fradkin and S.H. Shenker, Phase Diagrams of Lattice Gauge Theories with Higgs Fields, Phys. Rev. D 19 (1979) 3682 [INSPIRE].ADSGoogle Scholar
  37. [37]
    C. Vafa and E. Witten, Restrictions on Symmetry Breaking in Vector-Like Gauge Theories, Nucl. Phys. B 234 (1984) 173 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    S. Dimopoulos, S. Raby and L. Susskind, Light Composite Fermions, Nucl. Phys. B 173 (1980) 208 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    C. Pica and F. Sannino, β-function and Anomalous Dimensions, Phys. Rev. D 83 (2011) 116001 [arXiv:1011.3832] [INSPIRE].
  40. [40]
    C. Pica and F. Sannino, UV and IR Zeros of Gauge Theories at The Four Loop Order and Beyond, Phys. Rev. D 83 (2011) 035013 [arXiv:1011.5917] [INSPIRE].ADSGoogle Scholar
  41. [41]
    T.A. Ryttov and R. Shrock, Higher-Loop Corrections to the Infrared Evolution of a Gauge Theory with Fermions, Phys. Rev. D 83 (2011) 056011 [arXiv:1011.4542] [INSPIRE].ADSGoogle Scholar
  42. [42]
    H. Georgi and D.B. Kaplan, Composite Higgs and Custodial SU(2), Phys. Lett. B 145 (1984) 216 [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    R. Lewis, C. Pica and F. Sannino, Light Asymmetric Dark Matter on the Lattice: SU(2) Technicolor with Two Fundamental Flavors, Phys. Rev. D 85 (2012) 014504 [arXiv:1109.3513] [INSPIRE].ADSGoogle Scholar
  44. [44]
    A. Hietanen, R. Lewis, C. Pica and F. Sannino, Fundamental Composite Higgs Dynamics on the Lattice: SU(2) with Two Flavors, JHEP 07 (2014) 116 [arXiv:1404.2794] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    R. Arthur, V. Drach, M. Hansen, A. Hietanen, C. Pica and F. Sannino, SU(2) Gauge Theory with Two Fundamental Flavours: a Minimal Template for Model Building, arXiv:1602.06559 [INSPIRE].
  46. [46]
    P. Sikivie, L. Susskind, M.B. Voloshin and V.I. Zakharov, Isospin Breaking in Technicolor Models, Nucl. Phys. B 173 (1980) 189 [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    J. Mrazek, A. Pomarol, R. Rattazzi, M. Redi, J. Serra and A. Wulzer, The Other Natural Two Higgs Doublet Model, Nucl. Phys. B 853 (2011) 1 [arXiv:1105.5403] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  48. [48]
    K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A Custodial symmetry for Zbb, Phys. Lett. B 641 (2006) 62 [hep-ph/0605341] [INSPIRE].
  49. [49]
    O. Antipin, M. Redi, A. Strumia and E. Vigiani, Accidental Composite Dark Matter, JHEP 07 (2015) 039 [arXiv:1503.08749] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    L. Vecchi, The Natural Composite Higgs, arXiv:1304.4579 [INSPIRE].
  51. [51]
    G. Cacciapaglia and F. Sannino, Fundamental Composite (Goldstone) Higgs Dynamics, JHEP 04 (2014) 111 [arXiv:1402.0233] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 1., Phys. Rev. 177 (1969) 2239 [INSPIRE].
  53. [53]
    C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 2., Phys. Rev. 177 (1969) 2247 [INSPIRE].
  54. [54]
    F. Sannino, Large-N Scalars: From Glueballs to Dynamical Higgs Models, Phys. Rev. D 93 (2016) 105011 [arXiv:1508.07413] [INSPIRE].ADSMathSciNetGoogle Scholar
  55. [55]
    C. Csáki, A. Falkowski and A. Weiler, The Flavor of the Composite Pseudo-Goldstone Higgs, JHEP 09 (2008) 008 [arXiv:0804.1954] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    M. Redi and A. Weiler, Flavor and CP Invariant Composite Higgs Models, JHEP 11 (2011) 108 [arXiv:1106.6357] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  57. [57]
    B. Keren-Zur, P. Lodone, M. Nardecchia, D. Pappadopulo, R. Rattazzi and L. Vecchi, On Partial Compositeness and the CP asymmetry in charm decays, Nucl. Phys. B 867 (2013) 394 [arXiv:1205.5803] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  58. [58]
    R. Barbieri, D. Buttazzo, F. Sala, D.M. Straub and A. Tesi, A 125 GeV composite Higgs boson versus flavour and electroweak precision tests, JHEP 05 (2013) 069 [arXiv:1211.5085] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    O. Matsedonskyi, On Flavour and Naturalness of Composite Higgs Models, JHEP 02 (2015) 154 [arXiv:1411.4638] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    A. Romanino and A. Strumia, Electric dipole moments from Yukawa phases in supersymmetric theories, Nucl. Phys. B 490 (1997) 3 [hep-ph/9610485] [INSPIRE].
  61. [61]
    ACME collaboration, J. Baron et al., Order of Magnitude Smaller Limit on the Electric Dipole Moment of the Electron, Science 343 (2014) 269 [arXiv:1310.7534] [INSPIRE].
  62. [62]
    J.M. Pendlebury et al., Revised experimental upper limit on the electric dipole moment of the neutron, Phys. Rev. D 92 (2015) 092003 [arXiv:1509.04411] [INSPIRE].ADSGoogle Scholar
  63. [63]
    MEG collaboration, J. Adam et al., New constraint on the existence of the μ +e + γ decay, Phys. Rev. Lett. 110 (2013) 201801 [arXiv:1303.0754] [INSPIRE].
  64. [64]
    B. Gripaios, Composite Leptoquarks at the LHC, JHEP 02 (2010) 045 [arXiv:0910.1789] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  65. [65]
    L. Calibbi, Z. Lalak, S. Pokorski and R. Ziegler, Universal Constraints on Low-Energy Flavour Models, JHEP 07 (2012) 004 [arXiv:1204.1275] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    G. Isidori, Flavor physics and CP-violation, arXiv:1302.0661 [INSPIRE].
  67. [67]
    M. González-Alonso and J. Martin Camalich, Global Effective-Field-Theory analysis of New-Physics effects in (semi)leptonic kaon decays, arXiv:1605.07114 [INSPIRE].

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Francesco Sannino
    • 1
  • Alessandro Strumia
    • 2
    • 3
  • Andrea Tesi
    • 4
    Email author
  • Elena Vigiani
    • 2
  1. 1.CP3-Origins and Danish IASUniversity of Southern DenmarkOdense MDenmark
  2. 2.Dipartimento di Fisica dell’Università di Pisa and INFNPisaItaly
  3. 3.Theory Division, CERNGenevaSwitzerland
  4. 4.Department of Physics, Enrico Fermi InstituteUniversity of ChicagoChicagoU.S.A.

Personalised recommendations