Journal of High Energy Physics

, 2016:16 | Cite as

Infinitesimal moduli of G2 holonomy manifolds with instanton bundles

  • Xenia de la Ossa
  • Magdalena Larfors
  • Eirik E. Svanes
Open Access
Regular Article - Theoretical Physics


We describe the infinitesimal moduli space of pairs (Y, V) where Y is a manifold with G2 holonomy, and V is a vector bundle on Y with an instanton connection. These structures arise in connection to the moduli space of heterotic string compactifications on compact and non-compact seven dimensional spaces, e.g. domain walls. Employing the canonical G2 cohomology developed by Reyes-Carrión and Fernández and Ugarte, we show that the moduli space decomposes into the sum of the bundle moduli \( {H}_{{\overset{\vee }{\mathrm{d}}}_A}^1\left(Y,\mathrm{End}(V)\right) \) plus the moduli of the G2 structure preserving the instanton condition. The latter piece is contained in \( {H}_{\overset{\vee }{\mathrm{d}}\theta}^1\left(Y,TY\right) \), and is given by the kernel of a map \( \overset{\vee }{\mathrm{\mathcal{F}}} \) which generalises the concept of the Atiyah map for holomorphic bundles on complex manifolds to the case at hand. In fact, the map \( \overset{\vee }{\mathrm{\mathcal{F}}} \) is given in terms of the curvature of the bundle and maps \( {H}_{\overset{\vee }{\mathrm{d}}\theta}^1\left(Y,TY\right) \) into \( {H}_{{\overset{\vee }{\mathrm{d}}}_A}^2\left(Y,\mathrm{End}(V)\right) \), and moreover can be used to define a cohomology on an extension bundle of TY by End(V). We comment further on the resemblance with the holomorphic Atiyah algebroid and connect the story to physics, in particular to heterotic compactifications on (Y, V) when α′ = 0.


Superstrings and Heterotic Strings Differential and Algebraic Geometry Superstring Vacua 


  1. [1]
    M. Berger, Sur les groupes d’holonomie homogene des varietes a connexion affine et des varietes riemanniennes, Bull. Soc. Math. France 83 (1955) 279.MathSciNetMATHGoogle Scholar
  2. [2]
    R.L. Bryant, Metrics with exceptional holonomy, Annals Math. 126 (1987) 525.MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    R. Bryand and S. Salamon, On the construction of some complete metrices with expectional holonomy, Duke Math. J. 58 (1989) 829 [INSPIRE].MathSciNetCrossRefGoogle Scholar
  4. [4]
    D.D. Joyce, Compact riemannian 7-manifolds with holonomy g 2 . i, J. Differential Geom. 43 (1996) 291.MathSciNetMATHGoogle Scholar
  5. [5]
    D.D. Joyce, Compact riemannian 7-manifolds with holonomy g 2 . ii, J. Differential Geom. 43 (1996) 329.MathSciNetMATHGoogle Scholar
  6. [6]
    S. Karigiannis, Deformations of G 2 and Spin(7) Structures on Manifolds, math/0301218.
  7. [7]
    X. Dai, X. Wang and G. Wei, On the Stability of Riemannian Manifold with Parallel Spinors, math/0311253.
  8. [8]
    J. de Boer, A. Naqvi and A. Shomer, The Topological G 2 string, Adv. Theor. Math. Phys. 12 (2008) 243 [hep-th/0506211] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    S. Karigiannis and N. Conan Leung, Hodge Theory for G2-manifolds: Intermediate Jacobians and Abel-Jacobi maps, arXiv:0709.2987.
  10. [10]
    M. Graña and C.S. Shahbazi, M-theory moduli spaces and torsion-free structures, JHEP 05 (2015) 085 [arXiv:1410.8617] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    S. Grigorian, Moduli spaces of G 2 manifolds, Rev. Math. Phys. 22 (2010) 1061 [arXiv:0911.2185] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    S. Karigiannis and J. Lotay, Deformation theory of G 2 conifolds, arXiv:1212.6457.
  13. [13]
    X. de la Ossa, M. Larfors and E.E. Svanes, Infinitesimal moduli of G2 holonomy manifolds with instanton bundles, arXiv:1607.03473 [INSPIRE].
  14. [14]
    N.J. Hitchin, The Geometry of Three-Forms in Six Dimensions, J. Diff. Geom. 55 (2000) 547 [math/0010054] [INSPIRE].MathSciNetMATHGoogle Scholar
  15. [15]
    J. Gutowski and G. Papadopoulos, Moduli spaces and brane solitons for M-theory compactifications on holonomy G 2 manifolds, Nucl. Phys. B 615 (2001) 237 [hep-th/0104105] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    C. Beasley and E. Witten, A note on fluxes and superpotentials in M-theory compactifications on manifolds of G 2 holonomy, JHEP 07 (2002) 046 [hep-th/0203061] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    S. Grigorian and S.-T. Yau, Local geometry of the G 2 moduli space, Commun. Math. Phys. 287 (2009) 459 [arXiv:0802.0723] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    B. de Carlos, S. Gurrieri, A. Lukas and A. Micu, Moduli stabilisation in heterotic string compactifications, JHEP 03 (2006) 005 [hep-th/0507173] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    S. Gurrieri, A. Lukas and A. Micu, Heterotic on half-flat, Phys. Rev. D 70 (2004) 126009 [hep-th/0408121] [INSPIRE].ADSMathSciNetGoogle Scholar
  20. [20]
    S. Gurrieri, A. Lukas and A. Micu, Heterotic String Compactifications on Half-flat Manifolds. II., JHEP 12 (2007) 081 [arXiv:0709.1932] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    M. Klaput, A. Lukas and C. Matti, Bundles over Nearly-Kähler Homogeneous Spaces in Heterotic String Theory, JHEP 09 (2011) 100 [arXiv:1107.3573] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    J. Gray, M. Larfors and D. Lüst, Heterotic domain wall solutions and SU(3) structure manifolds, JHEP 08 (2012) 099 [arXiv:1205.6208] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    M. Klaput, A. Lukas, C. Matti and E.E. Svanes, Moduli Stabilising in Heterotic Nearly Káhler Compactifications, JHEP 01 (2013) 015 [arXiv:1210.5933] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    M. Klaput, A. Lukas and E.E. Svanes, Heterotic Calabi-Yau Compactifications with Flux, JHEP 09 (2013) 034 [arXiv:1305.0594] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    A. Lukas and C. Matti, G-structures and Domain Walls in Heterotic Theories, JHEP 01 (2011) 151 [arXiv:1005.5302] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    K.-P. Gemmer and O. Lechtenfeld, Heterotic G 2 -manifold compactifications with fluxes and fermionic condensates, JHEP 11 (2013) 182 [arXiv:1308.1955] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    U. Gran, G. Papadopoulos and D. Roest, Supersymmetric heterotic string backgrounds, Phys. Lett. B 656 (2007) 119 [arXiv:0706.4407] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    G. Papadopoulos, New half supersymmetric solutions of the heterotic string, Class. Quant. Grav. 26 (2009) 135001 [arXiv:0809.1156] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    G. Papadopoulos, Heterotic supersymmetric backgrounds with compact holonomy revisited, Class. Quant. Grav. 27 (2010) 125008 [arXiv:0909.2870] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    J.B. Gutowski and G. Papadopoulos, Supersymmetry of AdS and flat backgrounds in M-theory, JHEP 02 (2015) 145 [arXiv:1407.5652] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    S.W. Beck, J.B. Gutowski and G. Papadopoulos, Geometry and supersymmetry of heterotic warped flux AdS backgrounds, JHEP 07 (2015) 152, [arXiv:1505.01693].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    U. Gran, J.B. Gutowski and G. Papadopoulos, On supersymmetric Anti-de-Sitter, de-Sitter and Minkowski flux backgrounds, arXiv:1607.00191 [INSPIRE].
  33. [33]
    X. de la Ossa, M. Larfors and E.E. Svanes, Exploring SU(3) structure moduli spaces with integrable G 2 structures, Adv. Theor. Math. Phys. 19 (2015) 837 [arXiv:1409.7539] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    R. Reyes Carrion, Some special geometries defined by Lie groups. Ph.D. Thesis, University of Oxford, (1993).Google Scholar
  35. [35]
    R. Reyes Carrion, A generalization of the notion of instanton, Differ. Geom. Appl. 8 (1998) 1 [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    S. Donaldson and R. Thomas, Gauge theory in higher dimensions, The geometric universe (Oxford, 1996) (1998) 31.Google Scholar
  37. [37]
    S. Donaldson and E. Segal, Gauge Theory in higher dimensions, II, arXiv:0902.3239 [INSPIRE].
  38. [38]
    H.N. Sa Earp, Instantons on G2-manifolds. Ph.D. Thesis, Imperial College London, 2009.Google Scholar
  39. [39]
    H.N. Sa Earp, Generalised Chern-Simons Theory and G2 -Instantons over Associative Fibrations, SIGMA 10 (2014) 083 [arXiv:1401.5462] [INSPIRE].MathSciNetMATHGoogle Scholar
  40. [40]
    S. Bunk, A method of deforming G-structures, J. Geom. Phys. 96 (2015) 72 [arXiv:1410.5849] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  41. [41]
    B. Charbonneau and D. Harland, Deformations of nearly Kähler instantons, arXiv:1510.07720.
  42. [42]
    M. Fernández and L. Ugarte, Dolbeault cohomology for g2-manifolds, Geometriae Dedicata 70 (1998) 57.MathSciNetCrossRefMATHGoogle Scholar
  43. [43]
    L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, Stabilizing the Complex Structure in Heterotic Calabi-Yau Vacua, JHEP 02 (2011) 088 [arXiv:1010.0255] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  44. [44]
    L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, The Atiyah Class and Complex Structure Stabilization in Heterotic Calabi-Yau Compactifications, JHEP 10 (2011) 032 [arXiv:1107.5076] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  45. [45]
    L.B. Anderson and H. Feng, New Evidence for (0,2) Target Space Duality, arXiv:1607.04628 [INSPIRE].
  46. [46]
    X. de la Ossa and E.E. Svanes, Holomorphic Bundles and the Moduli Space of N = 1 Supersymmetric Heterotic Compactifications, JHEP 10 (2014) 123 [arXiv:1402.1725] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  47. [47]
    X. de la Ossa and E.E. Svanes, Connections, Field Redefinitions and Heterotic Supergravity, JHEP 12 (2014) 008 [arXiv:1409.3347] [INSPIRE].CrossRefGoogle Scholar
  48. [48]
    L.B. Anderson, J. Gray and E. Sharpe, Algebroids, Heterotic Moduli Spaces and the Strominger System, JHEP 07 (2014) 037 [arXiv:1402.1532] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    M. Garcia-Fernandez, R. Rubio and C. Tipler, Infinitesimal moduli for the Strominger system and Killing spinors in generalized geometry, arXiv:1503.07562 [INSPIRE].
  50. [50]
    O. Hohm and S.K. Kwak, Double Field Theory Formulation of Heterotic Strings, JHEP 06 (2011) 096 [arXiv:1103.2136] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  51. [51]
    M. Garcia-Fernandez, Torsion-free generalized connections and Heterotic Supergravity, Commun. Math. Phys. 332 (2014) 89 [arXiv:1304.4294] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  52. [52]
    D. Baraglia and P. Hekmati, Transitive Courant Algebroids, String Structures and T-duality, Adv. Theor. Math. Phys. 19 (2015) 613 [arXiv:1308.5159] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  53. [53]
    O.A. Bedoya, D. Marques and C. Núñez, Heterotic α’-corrections in Double Field Theory, JHEP 12 (2014) 074 [arXiv:1407.0365] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    A. Coimbra, R. Minasian, H. Triendl and D. Waldram, Generalised geometry for string corrections, JHEP 11 (2014) 160 [arXiv:1407.7542] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  55. [55]
    O. Hohm and B. Zwiebach, Green-Schwarz mechanism and α-deformed Courant brackets, JHEP 01 (2015) 012 [arXiv:1407.0708] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  56. [56]
    O. Hohm and B. Zwiebach, Double field theory at order α′, JHEP 11 (2014) 075 [arXiv:1407.3803] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  57. [57]
    A. Clarke, M. Garcia-Fernandez and C. Tipler, Moduli of G 2 structures and the Strominger system in dimension 7, arXiv:1607.01219 [INSPIRE].
  58. [58]
    E. Bonan, Sur les varietes riemanniennes a groupe d’holonomie g2 ou spin(7), C. R. Acad. Sci. Paris 262 (1966) 127.MathSciNetMATHGoogle Scholar
  59. [59]
    M. Fernández and A. Gray, Riemannian manifolds with structure group g2, Ann. Mat. Pura Appl. 32 (1982) 19.CrossRefMATHGoogle Scholar
  60. [60]
    D.D. Joyce, Compact manifolds with special holonomy, Oxford Mathematical Monographs, Oxford University Press, (2000).Google Scholar
  61. [61]
    R.L. Bryant, Some remarks on G 2 -structures, math/0305124 [INSPIRE].
  62. [62]
    T. Eguchi, P.B. Gilkey and A.J. Hanson, Gravitation, Gauge Theories and Differential Geometry, Phys. Rept. 66 (1980) 213 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  63. [63]
    E. Corrigan, C. Devchand, D.B. Fairlie and J. Nuyts, First Order Equations for Gauge Fields in Spaces of Dimension Greater Than Four, Nucl. Phys. B 214 (1983) 452 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  64. [64]
    R.S. Ward, Completely Solvable Gauge Field Equations in Dimension Greater Than Four, Nucl. Phys. B 236 (1984) 381 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  65. [65]
    G. Tian, Gauge theory and calibrated geometry. 1., Annals Math. 151 (2000) 193 [math/0010015] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  66. [66]
    D. Harland, T.A. Ivanova, O. Lechtenfeld and A.D. Popov, Yang-Mills flows on nearly Kähler manifolds and G 2 -instantons, Commun. Math. Phys. 300 (2010) 185 [arXiv:0909.2730] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  67. [67]
    I. Bauer, T.A. Ivanova, O. Lechtenfeld and F. Lubbe, Yang-Mills instantons and dyons on homogeneous G 2 -manifolds, JHEP 10 (2010) 044 [arXiv:1006.2388] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  68. [68]
    D. Harland and C. Nolle, Instantons and Killing spinors, JHEP 03 (2012) 082 [arXiv:1109.3552] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  69. [69]
    T.A. Ivanova and A.D. Popov, Instantons on Special Holonomy Manifolds, Phys. Rev. D 85 (2012) 105012 [arXiv:1203.2657] [INSPIRE].ADSGoogle Scholar
  70. [70]
    S. Bunk, O. Lechtenfeld, A.D. Popov and M. Sperling, Instantons on conical half-flat 6-manifolds, JHEP 01 (2015) 030 [arXiv:1409.0030] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    S. Bunk, T.A. Ivanova, O. Lechtenfeld, A.D. Popov and M. Sperling, Instantons on sine-cones over Sasakian manifolds, Phys. Rev. D 90 (2014) 065028 [arXiv:1407.2948] [INSPIRE].ADSGoogle Scholar
  72. [72]
    A.S. Haupt, O. Lechtenfeld and E.T. Musaev, Order αheterotic domain walls with warped nearly Kähler geometry, JHEP 11 (2014) 152 [arXiv:1409.0548] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    T. Huang, Yang-Mills connections over Calabi-Yau 3-folds and G 2 -manifolds, arXiv:1511.04928 [INSPIRE].
  74. [74]
    T. Walpuski, G2 -instantons on generalised Kummer constructions, Geom. Topol. 17 (2013) 2345 [arXiv:1109.6609] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  75. [75]
    A. Clarke, Instantons on the exceptional holonomy manifolds of Bryant and Salamon, J. Geom. Phys. 82 (2014) 84 [arXiv:1308.6358] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  76. [76]
    J.P. Gauntlett, D. Martelli and D. Waldram, Superstrings with intrinsic torsion, Phys. Rev. D 69 (2004) 086002 [hep-th/0302158] [INSPIRE].ADSMathSciNetGoogle Scholar
  77. [77]
    P. Candelas and D.J. Raine, Spontaneous Compactification and Supersymmetry in d = 11 Supergravity, Nucl. Phys. B 248 (1984) 415 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  78. [78]
    P. Kaste, R. Minasian and A. Tomasiello, Supersymmetric M-theory compactifications with fluxes on seven-manifolds and G structures, JHEP 07 (2003) 004 [hep-th/0303127] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  79. [79]
    M. Forger and H. Romer, Currents and the energy momentum tensor in classical field theory: A fresh look at an old problem, Annals Phys. 309 (2004) 306 [hep-th/0307199] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  80. [80]
    M.F. Atiyah, Complex analytic connections in fibre bundles, Trans. Am. Math. Soc. 85 (1957) 207.MathSciNetCrossRefMATHGoogle Scholar
  81. [81]
    S. Donaldson and R. Friedman, Connected sums of self-dual manifolds and deformations of singular spaces, Nonlinearity 2 (1989) 197.ADSMathSciNetCrossRefMATHGoogle Scholar
  82. [82]
    D. Huybrechts, The tangent bundle of a calabi-yau manifold-deformations and restriction to rational curves, Commun. Math. Phys. 171 (1995) 139.ADSMathSciNetCrossRefMATHGoogle Scholar
  83. [83]
    P.B. Gilkey, Invariance theory, the heat equation, and the Atiyah-Singer index theorem, Publish or Perish Inc., U.S.A. (1984), Electronic reprint © (1996) Peter B. Gilkey [INSPIRE].

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Xenia de la Ossa
    • 1
  • Magdalena Larfors
    • 2
  • Eirik E. Svanes
    • 3
    • 4
    • 5
  1. 1.Mathematical InstituteOxford UniversityOxfordU.K.
  2. 2.Department of Physics and AstronomyUppsala UniversityUppsalaSweden
  3. 3.Sorbonne Universités, UPMC Univ. Paris 06, UMR 7589, LPTHEParisFrance
  4. 4.CNRS, UMR 7589, LPTHEParisFrance
  5. 5.Sorbonne Universités, Institut Lagrange de ParisParisFrance

Personalised recommendations