Holographic flows in non-Abelian T-dual geometries

Abstract

We use non-Abelian T-duality to construct new \( \mathcal{N}=1 \) solutions of type IIA supergravity (and their M-theory lifts) that interpolate between AdS 5 geometries. We initiate a study of the holographic interpretation of these backgrounds as RG flows between conformal fixed points. Along the way we give an elegant formulation of non-Abelian T-duality when acting on a wide class of backgrounds, including those corresponding to such flows, in terms of their SU(2) structure.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  2. [2]

    N. Itzhaki, J.M. Maldacena, J. Sonnenschein and S. Yankielowicz, Supergravity and the large-N limit of theories with sixteen supercharges, Phys. Rev. D 58 (1998) 046004 [hep-th/9802042] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  3. [3]

    N. Itzhaki, J.M. Maldacena, J. Sonnenschein and S. Yankielowicz, Supergravity and the large-N limit of theories with sixteen supercharges, Phys. Rev. D 58 (1998) 046004 [hep-th/9802042] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  4. [4]

    E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  5. [5]

    D.Z. Freedman, S.S. Gubser, K. Pilch and N.P. Warner, Renormalization group flows from holography supersymmetry and a c theorem, Adv. Theor. Math. Phys. 3 (1999) 363 [hep-th/9904017] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  6. [6]

    I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: duality cascades and χSB resolution of naked singularities, JHEP 08 (2000) 052 [hep-th/0007191] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  7. [7]

    J.M. Maldacena and C. Núñez, Towards the large-N limit of pure N = 1 super Yang-Mills, Phys. Rev. Lett. 86 (2001) 588 [hep-th/0008001] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  8. [8]

    I.R. Klebanov and E. Witten, Superconformal field theory on three-branes at a Calabi-Yau singularity, Nucl. Phys. B 536 (1998) 199 [hep-th/9807080] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  9. [9]

    I.R. Klebanov and A. Murugan, Gauge/gravity duality and warped resolved conifold, JHEP 03 (2007) 042 [hep-th/0701064] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  10. [10]

    N. Halmagyi, K. Pilch, C. Romelsberger and N.P. Warner, The complex geometry of holographic flows of quiver gauge theories, JHEP 09 (2006) 063 [hep-th/0406147] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  11. [11]

    D. Gaiotto and J. Maldacena, The gravity duals of N = 2 superconformal field theories, JHEP 10 (2012) 189 [arXiv:0904.4466] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  12. [12]

    F. Benini, Y. Tachikawa and B. Wecht, Sicilian gauge theories and N = 1 dualities, JHEP 01 (2010) 088 [arXiv:0909.1327] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  13. [13]

    D. Gaiotto and J. Maldacena, The gravity duals of N = 2 superconformal field theories, JHEP 10 (2012) 189 [arXiv:0904.4466] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  14. [14]

    I. Bah, C. Beem, N. Bobev and B. Wecht, Four-dimensional SCFTs from M5-branes, JHEP 06 (2012) 005 [arXiv:1203.0303] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  15. [15]

    X.C. de la Ossa and F. Quevedo, Duality symmetries from non-Abelian isometries in string theory, Nucl. Phys. B 403 (1993) 377 [hep-th/9210021] [INSPIRE].

    Article  ADS  Google Scholar 

  16. [16]

    A. Giveon and M. Roček, On non-Abelian duality, Nucl. Phys. B 421 (1994) 173 [hep-th/9308154] [INSPIRE].

    Article  ADS  Google Scholar 

  17. [17]

    E. Alvarez, L. Álvarez-Gaumé, J.L.F. Barbon and Y. Lozano, Some global aspects of duality in string theory, Nucl. Phys. B 415 (1994) 71 [hep-th/9309039] [INSPIRE].

    Article  ADS  Google Scholar 

  18. [18]

    G. Itsios, Y. Lozano, E.Ó Colgáin and K. Sfetsos, Non-Abelian T-duality and consistent truncations in type-II supergravity, JHEP 08 (2012) 132 [arXiv:1205.2274] [INSPIRE].

  19. [19]

    J. Jeong, O. Kelekci and E.Ó Colgáin, An alternative IIB embedding of F(4) gauged supergravity, JHEP 05 (2013) 079 [arXiv:1302.2105] [INSPIRE].

  20. [20]

    Ö. Kelekci, Y. Lozano, N.T. Macpherson and E. Ó Colgáin, Supersymmetry and non-Abelian T-duality in type-II supergravity, Class. Quant. Grav. 32 (2015) 035014 [arXiv:1409.7406] [INSPIRE].

  21. [21]

    K. Sfetsos and D.C. Thompson, On non-Abelian T-dual geometries with Ramond fluxes, Nucl. Phys. B 846 (2011) 21 [arXiv:1012.1320] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  22. [22]

    G. Itsios, C. Núñez, K. Sfetsos and D.C. Thompson, On non-Abelian T-duality and new N = 1 backgrounds, Phys. Lett. B 721 (2013) 342 [arXiv:1212.4840] [INSPIRE].

    Article  ADS  Google Scholar 

  23. [23]

    G. Itsios, C. Núñez, K. Sfetsos and D.C. Thompson, Non-Abelian T-duality and the AdS/CFT correspondence: new N = 1 backgrounds, Nucl. Phys. B 873 (2013) 1 [arXiv:1301.6755] [INSPIRE].

    Article  ADS  Google Scholar 

  24. [24]

    Y. Lozano, E. Ó Colgáin, K. Sfetsos and D.C. Thompson, Non-Abelian T-duality, Ramond fields and coset geometries, JHEP 06 (2011) 106 [arXiv:1104.5196] [INSPIRE].

  25. [25]

    Y. Lozano, E. Ó Colgáin, D. Rodríguez-Gómez and K. Sfetsos, Supersymmetric AdS6 via T duality, Phys. Rev. Lett. 110 (2013) 231601 [arXiv:1212.1043] [INSPIRE].

  26. [26]

    E. Gevorgyan and G. Sarkissian, Defects, non-Abelian T-duality and the Fourier-Mukai transform of the Ramond-Ramond fields, JHEP 03 (2014) 035 [arXiv:1310.1264] [INSPIRE].

    Article  ADS  Google Scholar 

  27. [27]

    N.T. Macpherson, Non-Abelian T-duality, G 2 -structure rotation and holographic duals of N = 1 Chern-Simons theories, JHEP 11 (2013) 137 [arXiv:1310.1609] [INSPIRE].

    Article  ADS  Google Scholar 

  28. [28]

    Y. Lozano, E. Ó Colgáin and D. Rodríguez-Gómez, Hints of 5d fixed point theories from non-Abelian T-duality, JHEP 05 (2014) 009 [arXiv:1311.4842] [INSPIRE].

  29. [29]

    J. Gaillard, N.T. Macpherson, C. Núñez and D.C. Thompson, Dualising the baryonic branch: dynamic SU(2) and confining backgrounds in IIA, Nucl. Phys. B 884 (2014) 696 [arXiv:1312.4945] [INSPIRE].

    Article  ADS  Google Scholar 

  30. [30]

    A. Barranco, J. Gaillard, N.T. Macpherson, C. Núñez and D.C. Thompson, G-structures and flavouring non-Abelian T-duality, JHEP 08 (2013) 018 [arXiv:1305.7229] [INSPIRE].

    Article  ADS  Google Scholar 

  31. [31]

    D. Elander, A.F. Faedo, C. Hoyos, D. Mateos and M. Piai, Multiscale confining dynamics from holographic RG flows, JHEP 05 (2014) 003 [arXiv:1312.7160] [INSPIRE].

    Article  ADS  Google Scholar 

  32. [32]

    S. Zacarías, Semiclassical strings and non-Abelian T-duality, Phys. Lett. B 737 (2014) 90 [arXiv:1401.7618] [INSPIRE].

    Article  ADS  Google Scholar 

  33. [33]

    E. Caceres, N.T. Macpherson and C. Núñez, New type IIB backgrounds and aspects of their field theory duals, JHEP 08 (2014) 107 [arXiv:1402.3294] [INSPIRE].

    Article  ADS  Google Scholar 

  34. [34]

    P.M. Pradhan, Oscillating strings and non-Abelian T-dual Klebanov-Witten background, Phys. Rev. D 90 (2014) 046003 [arXiv:1406.2152] [INSPIRE].

    ADS  Google Scholar 

  35. [35]

    E. Plauschinn, On T-duality transformations for the three-sphere, Nucl. Phys. B 893 (2015) 257 [arXiv:1408.1715] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  36. [36]

    K. Sfetsos and D.C. Thompson, New N = 1 supersymmetric AdS 5 backgrounds in type IIA supergravity, JHEP 11 (2014) 006 [arXiv:1408.6545] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  37. [37]

    N.T. Macpherson, C. Núñez, L.A. Pando Zayas, V.G.J. Rodgers and C.A. Whiting, Type IIB supergravity solutions with AdS 5 from Abelian and non-Abelian T dualities, JHEP 02 (2015) 040 [arXiv:1410.2650] [INSPIRE].

    Article  ADS  Google Scholar 

  38. [38]

    K.S. Kooner and S. Zacarías, Non-Abelian T-dualizing the resolved conifold with regular and fractional D3-branes, JHEP 08 (2015) 143 [arXiv:1411.7433] [INSPIRE].

    Article  Google Scholar 

  39. [39]

    T.R. Araujo and H. Nastase, N = 1 SUSY backgrounds with an AdS factor from non-Abelian T duality, Phys. Rev. D 91 (2015) 126015 [arXiv:1503.00553] [INSPIRE].

    ADS  Google Scholar 

  40. [40]

    Y. Bea et al., Compactifications of the Klebanov-Witten CFT and new AdS 3 backgrounds, JHEP 05 (2015) 062 [arXiv:1503.07527] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  41. [41]

    Y. Lozano, N.T. Macpherson, J. Montero and E. Ó Colgáin, New AdS 3 × S 2 T-duals with N = (0, 4) supersymmetry, JHEP 08 (2015) 121 [arXiv:1507.02659] [INSPIRE].

  42. [42]

    Y. Lozano, N.T. Macpherson and J. Montero, A N = 2 supersymmetric AdS 4 solution in M-theory with purely magnetic flux, JHEP 10 (2015) 004 [arXiv:1507.02660] [INSPIRE].

    ADS  Google Scholar 

  43. [43]

    T.R. Araujo and H. Nastase, Non-Abelian T-duality for nonrelativistic holographic duals, arXiv:1508.06568 [INSPIRE].

  44. [44]

    T.H. Buscher, Path integral derivation of quantum duality in nonlinear σ-models, Phys. Lett. B 201 (1988) 466 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  45. [45]

    T.H. Buscher, A symmetry of the string background field equations, Phys. Lett. B 194 (1987) 59 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  46. [46]

    M. Roček and E.P. Verlinde, Duality, quotients and currents, Nucl. Phys. B 373 (1992) 630 [hep-th/9110053] [INSPIRE].

    ADS  Google Scholar 

  47. [47]

    E. Bergshoeff, R. Kallosh, T. Ortín, D. Roest and A. Van Proeyen, New formulations of D = 10 supersymmetry and D8-O8 domain walls, Class. Quant. Grav. 18 (2001) 3359 [hep-th/0103233] [INSPIRE].

  48. [48]

    R.A. Reid-Edwards and B. Stefański Jr., On type IIA geometries dual to N = 2 SCFTs, Nucl. Phys. B 849 (2011) 549 [arXiv:1011.0216] [INSPIRE].

    Article  ADS  Google Scholar 

  49. [49]

    O. Aharony, L. Berdichevsky and M. Berkooz, 4d N = 2 superconformal linear quivers with type IIA duals, JHEP 08 (2012) 131 [arXiv:1206.5916] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  50. [50]

    H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries, JHEP 10 (2004) 025 [hep-th/0409174] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  51. [51]

    E. Ó Colgáin, J.-B. Wu and H. Yavartanoo, On the generality of the LLM geometries in M-theory, JHEP 04 (2011) 002 [arXiv:1010.5982] [INSPIRE].

  52. [52]

    J.M. Maldacena and C. Núñez, Supergravity description of field theories on curved manifolds and a no go theorem, Int. J. Mod. Phys. A 16 (2001) 822 [hep-th/0007018] [INSPIRE].

    Article  ADS  Google Scholar 

  53. [53]

    A.P. Polychronakos and K. Sfetsos, High spin limits and non-Abelian T-duality, Nucl. Phys. B 843 (2011) 344 [arXiv:1008.3909] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  54. [54]

    Y. Lozano and N.T. Macpherson, A new AdS 4 /CFT 3 dual with extended SUSY and a spectral flow, JHEP 11 (2014) 115 [arXiv:1408.0912] [INSPIRE].

    Article  ADS  Google Scholar 

  55. [55]

    F. Apruzzi, M. Fazzi, D. Rosa and A. Tomasiello, All AdS 7 solutions of type-II supergravity, JHEP 04 (2014) 064 [arXiv:1309.2949] [INSPIRE].

    Article  ADS  Google Scholar 

  56. [56]

    A. Rota and A. Tomasiello, AdS 4 compactifications of AdS 7 solutions in type-II supergravity, JHEP 07 (2015) 076 [arXiv:1502.06622] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  57. [57]

    O. Aharony, M. Berkooz and S.-J. Rey, Rigid holography and six-dimensional N = (2, 0) theories on AdS 5 × S 1, JHEP 03 (2015) 121 [arXiv:1501.02904] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  58. [58]

    A.S. Schwarz, Quantum field theory and topology, Springer, Berlin Germany (1993).

    Book  MATH  Google Scholar 

  59. [59]

    J. Greensite, An introduction to the confinement problem, Lect. Notes Phys. 821 (2011) 1 [INSPIRE].

    Article  MathSciNet  Google Scholar 

  60. [60]

    I.R. Klebanov, P. Ouyang and E. Witten, A gravity dual of the chiral anomaly, Phys. Rev. D 65 (2002) 105007 [hep-th/0202056] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  61. [61]

    I.R. Klebanov, D. Kutasov and A. Murugan, Entanglement as a probe of confinement, Nucl. Phys. B 796 (2008) 274 [arXiv:0709.2140] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  62. [62]

    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  63. [63]

    D. Gaiotto and A. Tomasiello, Holography for (1, 0) theories in six dimensions, JHEP 12 (2014) 003 [arXiv:1404.0711] [INSPIRE].

    Article  ADS  Google Scholar 

  64. [64]

    M. Graña, R. Minasian, M. Petrini and A. Tomasiello, Generalized structures of N = 1 vacua, JHEP 11 (2005) 020 [hep-th/0505212] [INSPIRE].

    Article  ADS  Google Scholar 

  65. [65]

    J.P. Gauntlett, D. Martelli, J.F. Sparks and D. Waldram, A new infinite class of Sasaki-Einstein manifolds, Adv. Theor. Math. Phys. 8 (2006) 987 [hep-th/0403038] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  66. [66]

    D. Martelli and J. Sparks, Toric geometry, Sasaki-Einstein manifolds and a new infinite class of AdS/CFT duals, Commun. Math. Phys. 262 (2006) 51 [hep-th/0411238] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. [67]

    D. Lüst and D. Tsimpis, Supersymmetric AdS 4 compactifications of IIA supergravity, JHEP 02 (2005) 027 [hep-th/0412250] [INSPIRE].

    Article  Google Scholar 

  68. [68]

    J.P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, Supersymmetric AdS 5 solutions of type IIB supergravity, Class. Quant. Grav. 23 (2006) 4693 [hep-th/0510125] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. [69]

    P. Kaste, R. Minasian and A. Tomasiello, Supersymmetric M-theory compactifications with fluxes on seven-manifolds and G structures, JHEP 07 (2003) 004 [hep-th/0303127] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  70. [70]

    L.A. Pando Zayas and A.A. Tseytlin, 3-branes on resolved conifold, JHEP 11 (2000) 028 [hep-th/0010088] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  71. [71]

    A. Pini and D. Rodríguez-Gómez, Gauge/gravity duality and RG flows in 5d gauge theories, Nucl. Phys. B 884 (2014) 612 [arXiv:1402.6155] [INSPIRE].

    Article  ADS  Google Scholar 

  72. [72]

    C. Krishnan and S. Kuperstein, Gauge theory RG flows from a warped resolved orbifold, JHEP 04 (2008) 009 [arXiv:0801.1053] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  73. [73]

    D. Martelli and J. Sparks, Symmetry-breaking vacua and baryon condensates in AdS/CFT, Phys. Rev. D 79 (2009) 065009 [arXiv:0804.3999] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  74. [74]

    D. Martelli and J. Sparks, Baryonic branches and resolutions of Ricci-flat Kähler cones, JHEP 04 (2008) 067 [arXiv:0709.2894] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  75. [75]

    N. Benishti, D. Rodríguez-Gómez and J. Sparks, Baryonic symmetries and M5 branes in the AdS 4 /CFT 3 correspondence, JHEP 07 (2010) 024 [arXiv:1004.2045] [INSPIRE].

    Article  ADS  Google Scholar 

  76. [76]

    I. Bah and B. Wecht, New N = 1 superconformal field theories in four dimensions, JHEP 07 (2013) 107 [arXiv:1111.3402] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  77. [77]

    I. Bah, C. Beem, N. Bobev and B. Wecht, AdS/CFT dual pairs from M5-branes on Riemann surfaces, Phys. Rev. D 85 (2012) 121901 [arXiv:1112.5487] [INSPIRE].

    ADS  Google Scholar 

  78. [78]

    I.R. Klebanov, A. Murugan, D. Rodríguez-Gómez and J. Ward, Goldstone bosons and global strings in a warped resolved conifold, JHEP 05 (2008) 090 [arXiv:0712.2224] [INSPIRE].

    Article  ADS  Google Scholar 

  79. [79]

    S.S. Gubser and I.R. Klebanov, Baryons and domain walls in an N = 1 superconformal gauge theory, Phys. Rev. D 58 (1998) 125025 [hep-th/9808075] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  80. [80]

    D. Gaiotto and S.S. Razamat, N = 1 theories of class S k , JHEP 07 (2015) 073 [arXiv:1503.05159] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  81. [81]

    C. Núñez, A. Paredes and A.V. Ramallo, Unquenched flavor in the gauge/gravity correspondence, Adv. High Energy Phys. 2010 (2010) 196714 [arXiv:1002.1088] [INSPIRE].

    Article  Google Scholar 

  82. [82]

    M. Graña, R. Minasian, M. Petrini and A. Tomasiello, A scan for new N = 1 vacua on twisted tori, JHEP 05 (2007) 031 [hep-th/0609124] [INSPIRE].

    Article  ADS  Google Scholar 

  83. [83]

    P. Koerber and D. Tsimpis, Supersymmetric sources, integrability and generalized-structure compactifications, JHEP 08 (2007) 082 [arXiv:0706.1244] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  84. [84]

    L. Martucci and P. Smyth, Supersymmetric D-branes and calibrations on general N = 1 backgrounds, JHEP 11 (2005) 048 [hep-th/0507099] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  85. [85]

    J.P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, Supersymmetric AdS 5 solutions of M-theory, Class. Quant. Grav. 21 (2004) 4335 [hep-th/0402153] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  86. [86]

    N. Halmagyi, K. Pilch, C. Romelsberger and N.P. Warner, Holographic duals of a family of N = 1 fixed points, JHEP 08 (2006) 083 [hep-th/0506206] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  87. [87]

    P.M. Petropoulos, K. Sfetsos and K. Siampos, Gravity duals of N = 2 superconformal field theories with no electrostatic description, JHEP 11 (2013) 118 [arXiv:1308.6583] [INSPIRE].

    Article  ADS  Google Scholar 

  88. [88]

    P.M. Petropoulos, K. Sfetsos and K. Siampos, Gravity duals of N = 2 SCFTs and asymptotic emergence of the electrostatic description, JHEP 09 (2014) 057 [arXiv:1406.0853] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Carlos Núñez.

Additional information

ArXiv ePrint: 1509.04286

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Macpherson, N.T., Núñez, C., Thompson, D.C. et al. Holographic flows in non-Abelian T-dual geometries. J. High Energ. Phys. 2015, 212 (2015). https://doi.org/10.1007/JHEP11(2015)212

Download citation

Keywords

  • AdS-CFT Correspondence
  • Gauge-gravity correspondence
  • String Duality