Advertisement

Journal of High Energy Physics

, 2015:200 | Cite as

Virasoro conformal blocks and thermality from classical background fields

  • A. Liam Fitzpatrick
  • Jared Kaplan
  • Matthew T. WaltersEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

We show that in 2d CFTs at large central charge, the coupling of the stress tensor to heavy operators can be re-absorbed by placing the CFT in a non-trivial background metric. This leads to a more precise computation of the Virasoro conformal blocks between heavy and light operators, which are shown to be equivalent to global conformal blocks evaluated in the new background. We also generalize to the case where the operators carry U(1) charges. The refined Virasoro blocks can be used as the seed for a new Virasoro block recursion relation expanded in the heavy-light limit. We comment on the implications of our results for the universality of black hole thermality in AdS3, or equivalently, the eigenstate thermalization hypothesis for CFT2 at large central charge.

Keywords

AdS-CFT Correspondence Conformal and W Symmetry 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M. Srednicki, Chaos and quantum thermalization, Phys. Rev. E 50 (1994) 888.ADSGoogle Scholar
  2. [2]
    J. M. Deutsch, Quantum statistical mechanics in a closed system, Phys. Rev. A 43 (1991) 2046.CrossRefADSMathSciNetGoogle Scholar
  3. [3]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [INSPIRE].
  4. [4]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  5. [5]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  6. [6]
    S. Ferrara, A.F. Grillo and R. Gatto, Tensor representations of conformal algebra and conformally covariant operator product expansion, Annals Phys. 76 (1973) 161 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  7. [7]
    A.M. Polyakov, Non-hamiltonian approach to the quantum field theory at small distances, Zh. Eksp. Teor. Fiz. 66 (1973) 23.Google Scholar
  8. [8]
    R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP 12 (2008) 031 [arXiv:0807.0004] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  9. [9]
    I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from conformal field theory, JHEP 10 (2009) 079 [arXiv:0907.0151] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  10. [10]
    I. Heemskerk and J. Sully, More holography from conformal field theory, JHEP 09 (2010) 099 [arXiv:1006.0976] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  11. [11]
    S. El-Showk and K. Papadodimas, Emergent spacetime and holographic CFTs, JHEP 10 (2012) 106 [arXiv:1101.4163] [INSPIRE].CrossRefADSGoogle Scholar
  12. [12]
    P. Liendo, L. Rastelli and B.C. van Rees, The bootstrap program for boundary CFT d, JHEP 07 (2013) 113 [arXiv:1210.4258] [INSPIRE].CrossRefADSGoogle Scholar
  13. [13]
    A.L. Fitzpatrick and J. Kaplan, AdS field theory from conformal field theory, JHEP 02 (2013) 054 [arXiv:1208.0337] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  14. [14]
    A.L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The analytic bootstrap and AdS superhorizon locality, JHEP 12 (2013) 004 [arXiv:1212.3616] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  15. [15]
    Z. Komargodski and A. Zhiboedov, Convexity and liberation at large spin, JHEP 11 (2013) 140 [arXiv:1212.4103] [INSPIRE].CrossRefADSGoogle Scholar
  16. [16]
    A.L. Fitzpatrick, J. Kaplan and D. Poland, Conformal blocks in the large D limit, JHEP 08 (2013) 107 [arXiv:1305.0004] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  17. [17]
    L.F. Alday and A. Bissi, Higher-spin correlators, JHEP 10 (2013) 202 [arXiv:1305.4604] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  18. [18]
    L.F. Alday and A. Bissi, Generalized bootstrap equations for \( \mathcal{N}=4 \) SCFT, JHEP 02 (2015) 101 [arXiv:1404.5864] [INSPIRE].ADSMathSciNetGoogle Scholar
  19. [19]
    C. Beem, L. Rastelli and B.C. van Rees, The \( \mathcal{N}=4 \) superconformal bootstrap, Phys. Rev. Lett. 111 (2013) 071601 [arXiv:1304.1803] [INSPIRE].CrossRefADSGoogle Scholar
  20. [20]
    C. Beem, M. Lemos, P. Liendo, L. Rastelli and B.C. van Rees, The \( \mathcal{N}=2 \) superconformal bootstrap, arXiv:1412.7541 [INSPIRE].
  21. [21]
    L.F. Alday, A. Bissi and T. Lukowski, Lessons from crossing symmetry at large-N , JHEP 06 (2015) 074 [arXiv:1410.4717] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  22. [22]
    S.M. Chester, J. Lee, S.S. Pufu and R. Yacoby, The \( \mathcal{N}=8 \) superconformal bootstrap in three dimensions, JHEP 09 (2014) 143 [arXiv:1406.4814] [INSPIRE].CrossRefADSGoogle Scholar
  23. [23]
    S.M. Chester, J. Lee, S.S. Pufu and R. Yacoby, Exact correlators of BPS operators from the 3D superconformal bootstrap, JHEP 03 (2015) 130 [arXiv:1412.0334] [INSPIRE].CrossRefMathSciNetGoogle Scholar
  24. [24]
    S. Jackson, L. McGough and H. Verlinde, Conformal Bootstrap, Universality and Gravitational Scattering, Nucl. Phys. B 901 (2015) 382 [arXiv:1412.5205] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  25. [25]
    A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Universality of long-distance AdS physics from the CFT bootstrap, JHEP 08 (2014) 145 [arXiv:1403.6829] [INSPIRE].CrossRefADSGoogle Scholar
  26. [26]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  27. [27]
    S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  28. [28]
    M. Headrick, Entanglement Renyi entropies in holographic theories, Phys. Rev. D 82 (2010) 126010 [arXiv:1006.0047] [INSPIRE].ADSGoogle Scholar
  29. [29]
    T. Hartman, Entanglement entropy at large central charge, arXiv:1303.6955 [INSPIRE].
  30. [30]
    T. Faulkner, The entanglement Renyi entropies of disjoint intervals in AdS/CFT, arXiv:1303.7221 [INSPIRE].
  31. [31]
    P. Caputa, J. Simón, A. Štikonas and T. Takayanagi, Quantum entanglement of localized excited states at finite temperature, JHEP 01 (2015) 102 [arXiv:1410.2287] [INSPIRE].CrossRefADSGoogle Scholar
  32. [32]
    T. Barrella, X. Dong, S.A. Hartnoll and V.L. Martin, Holographic entanglement beyond classical gravity, JHEP 09 (2013) 109 [arXiv:1306.4682] [INSPIRE].MathSciNetGoogle Scholar
  33. [33]
    B. Chen and J.-J. Zhang, On short interval expansion of Rényi entropy, JHEP 11 (2013) 164 [arXiv:1309.5453] [INSPIRE].CrossRefADSGoogle Scholar
  34. [34]
    A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP 08 (2013) 090 [arXiv:1304.4926] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  35. [35]
    E. Hijano, P. Kraus and R. Snively, Worldline approach to semi-classical conformal blocks, JHEP 07 (2015) 131 [arXiv:1501.02260] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  36. [36]
    D.A. Roberts and D. Stanford, Two-dimensional conformal field theory and the butterfly effect, Phys. Rev. Lett. 115 (2015) 131603 [arXiv:1412.5123] [INSPIRE].CrossRefADSGoogle Scholar
  37. [37]
    C.T. Asplund, A. Bernamonti, F. Galli and T. Hartman, Holographic entanglement entropy from 2D CFT: heavy states and local quenches, JHEP 02 (2015) 171 [arXiv:1410.1392] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  38. [38]
    S. Hellerman, A universal inequality for CFT and quantum gravity, JHEP 08 (2011) 130 [arXiv:0902.2790] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  39. [39]
    T. Hartman, C.A. Keller and B. Stoica, Universal spectrum of 2D conformal field theory in the large c limit, JHEP 09 (2014) 118 [arXiv:1405.5137] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  40. [40]
    C.A. Keller and A. Maloney, Poincaré series, 3D gravity and CFT spectroscopy, JHEP 02 (2015) 080 [arXiv:1407.6008] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  41. [41]
    M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  42. [42]
    F.A. Dolan and H. Osborn, Conformal four point functions and the operator product expansion, Nucl. Phys. B 599 (2001) 459 [hep-th/0011040] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  43. [43]
    F.A. Dolan and H. Osborn, Conformal partial waves and the operator product expansion, Nucl. Phys. B 678 (2004) 491 [hep-th/0309180] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  44. [44]
    F.A. Dolan and H. Osborn, Conformal partial waves: further mathematical results, arXiv:1108.6194 [INSPIRE].
  45. [45]
    A. Zamolodchikov, Conformal symmetry in two-dimensions: an explicit recurrence formula for the conformal partial wave amplitude, Commun. Math. Phys. 96 (1984) 419.CrossRefADSMathSciNetGoogle Scholar
  46. [46]
    A. Zamolodchikov, Conformal symmetry in two-dimensional space: recursion representation of conformal block, Theor. Math. Phys. 73 (1987) 1088.CrossRefMathSciNetGoogle Scholar
  47. [47]
    L.S. Brown and J.P. Cassidy, Stress tensors and their trace anomalies in conformally flat space-times, Phys. Rev. D 16 (1977) 1712 [INSPIRE].ADSGoogle Scholar
  48. [48]
    C.P. Herzog and K.-W. Huang, Stress tensors from trace anomalies in conformal field theories, Phys. Rev. D 87 (2013) 081901 [arXiv:1301.5002] [INSPIRE].ADSGoogle Scholar
  49. [49]
    A. Litvinov, S. Lukyanov, N. Nekrasov and A. Zamolodchikov, Classical conformal blocks and Painleve VI, JHEP 07 (2014) 144 [arXiv:1309.4700] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  50. [50]
    P. Di Francesco, P. Mathieu and D. Senechal, Conformal field theory, Springer (1997).Google Scholar
  51. [51]
    A.L. Fitzpatrick, E. Katz, D. Poland and D. Simmons-Duffin, Effective conformal theory and the flat-space limit of AdS, JHEP 07 (2011) 023 [arXiv:1007.2412] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  52. [52]
    K. Jensen, Chiral anomalies and AdS/CMT in two dimensions, JHEP 01 (2011) 109 [arXiv:1012.4831] [INSPIRE].CrossRefADSGoogle Scholar
  53. [53]
    V. Keranen, Chern-Simons interactions in AdS 3 and the current conformal block, arXiv:1403.6881 [INSPIRE].
  54. [54]
    P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys. A 42 (2009) 504005 [arXiv:0905.4013] [INSPIRE].MathSciNetGoogle Scholar
  55. [55]
    J. Penedones, Writing CFT correlation functions as AdS scattering amplitudes, JHEP 03 (2011) 025 [arXiv:1011.1485] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  56. [56]
    R. Sundrum, From fixed points to the fifth dimension, Phys. Rev. D 86 (2012) 085025 [arXiv:1106.4501] [INSPIRE].ADSGoogle Scholar
  57. [57]
    A.L. Fitzpatrick and J. Kaplan, Analyticity and the holographic S-matrix, JHEP 10 (2012) 127 [arXiv:1111.6972] [INSPIRE].CrossRefADSGoogle Scholar
  58. [58]
    G. Mack, D-independent representation of conformal field theories in D dimensions via transformation to auxiliary dual resonance models. scalar amplitudes, arXiv:0907.2407 [INSPIRE].
  59. [59]
    G. Mack, D-dimensional conformal field theories with anomalous dimensions as dual resonance models, Bulg. J. Phys. 36 (2009) 214 [arXiv:0909.1024] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  60. [60]
    A.L. Fitzpatrick, J. Kaplan, J. Penedones, S. Raju and B.C. van Rees, A natural language for AdS/CFT correlators, JHEP 11 (2011) 095 [arXiv:1107.1499] [INSPIRE].CrossRefADSGoogle Scholar
  61. [61]
    M.F. Paulos, Towards Feynman rules for Mellin amplitudes, JHEP 10 (2011) 074 [arXiv:1107.1504] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  62. [62]
    A.L. Fitzpatrick, J. Kaplan, M.T. Walters and J. Wang, Eikonalization of conformal blocks, JHEP 09 (2015) 019 [arXiv:1504.01737] [INSPIRE].CrossRefGoogle Scholar
  63. [63]
    X.O. Camanho, J.D. Edelstein, J. Maldacena and A. Zhiboedov, Causality constraints on corrections to the graviton three-point coupling, arXiv:1407.5597 [INSPIRE].
  64. [64]
    K.-W. Huang, Weyl anomaly induced stress tensors in general manifolds, Nucl. Phys. B 879 (2014) 370 [arXiv:1308.2355] [INSPIRE].CrossRefADSGoogle Scholar
  65. [65]
    S. Giombi, A. Maloney and X. Yin, One-loop partition functions of 3D gravity, JHEP 08 (2008) 007 [arXiv:0804.1773] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  66. [66]
    X. Yin, Partition functions of three-dimensional pure gravity, Commun. Num. Theor. Phys. 2 (2008) 285 [arXiv:0710.2129] [INSPIRE].CrossRefzbMATHGoogle Scholar
  67. [67]
    T. Faulkner, A. Lewkowycz and J. Maldacena, Quantum corrections to holographic entanglement entropy, JHEP 11 (2013) 074 [arXiv:1307.2892] [INSPIRE].CrossRefADSGoogle Scholar
  68. [68]
    J. de Boer, A. Castro, E. Hijano, J.I. Jottar and P. Kraus, Higher spin entanglement and \( {\mathcal{W}}_{\mathrm{N}} \) conformal blocks, JHEP 07 (2015) 168 [arXiv:1412.7520] [INSPIRE].CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • A. Liam Fitzpatrick
    • 1
    • 2
  • Jared Kaplan
    • 3
  • Matthew T. Walters
    • 4
    Email author
  1. 1.Stanford Institute for Theoretical PhysicsStanford UniversityStanfordU.S.A.
  2. 2.SLAC National Accelerator LaboratoryMenlo ParkU.S.A.
  3. 3.Department of Physics and AstronomyJohns Hopkins UniversityBaltimoreU.S.A.
  4. 4.Department of PhysicsBoston UniversityBostonU.S.A.

Personalised recommendations