Advertisement

Journal of High Energy Physics

, 2015:197 | Cite as

Supersymmetric localization for BPS black hole entropy: 1-loop partition function from vector multiplets

  • Rajesh Kumar Gupta
  • Yuto Ito
  • Imtak JeonEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

We use the techniques of supersymmetric localization to compute the BPS black hole entropy in \( \mathcal{N}=2 \) supergravity. We focus on the n v + 1 vector multiplets on the black hole near horizon background which is AdS2 × S2 space. We find the localizing saddle point of the vector multiplets by solving the localization equations, and compute the exact one-loop partition function on the saddle point. Furthermore, we propose the appropriate functional integration measure. Through this measure, the one-loop determinant is written in terms of the radius of the physical metric, which depends on the localizing saddle point value of the vector multiplets. The result for the one-loop determinant is consistent with the logarithmic corrections to the BPS black hole entropy from vector multiplets.

Keywords

Black Holes in String Theory Supersymmetric gauge theory AdS-CFT Correspondence 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333 [INSPIRE].ADSMathSciNetGoogle Scholar
  2. [2]
    S.W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206] [INSPIRE].
  3. [3]
    A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  4. [4]
    R. Dijkgraaf, E.P. Verlinde and H.L. Verlinde, Counting dyons in N = 4 string theory, Nucl. Phys. B 484 (1997) 543 [hep-th/9607026] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  5. [5]
    J.M. Maldacena, G.W. Moore and A. Strominger, Counting BPS black holes in toroidal Type II string theory, hep-th/9903163 [INSPIRE].
  6. [6]
    G. Lopes Cardoso, B. de Wit, J. Kappeli and T. Mohaupt, Asymptotic degeneracy of dyonic N = 4 string states and black hole entropy, JHEP 12 (2004) 075 [hep-th/0412287] [INSPIRE].ADSGoogle Scholar
  7. [7]
    D. Shih, A. Strominger and X. Yin, Recounting Dyons in N = 4 string theory, JHEP 10 (2006) 087 [hep-th/0505094] [INSPIRE].ADSMathSciNetGoogle Scholar
  8. [8]
    D. Shih, A. Strominger and X. Yin, Counting dyons in N = 8 string theory, JHEP 06 (2006) 037 [hep-th/0506151] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  9. [9]
    D.P. Jatkar and A. Sen, Dyon spectrum in CHL models, JHEP 04 (2006) 018 [hep-th/0510147] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  10. [10]
    J.R. David, D.P. Jatkar and A. Sen, Product representation of Dyon partition function in CHL models, JHEP 06 (2006) 064 [hep-th/0602254] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  11. [11]
    A. Dabholkar and S. Nampuri, Spectrum of dyons and black holes in CHL orbifolds using Borcherds lift, JHEP 11 (2007) 077 [hep-th/0603066] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  12. [12]
    J.R. David and A. Sen, CHL Dyons and Statistical Entropy Function from D1 − D5 System, JHEP 11 (2006) 072 [hep-th/0605210] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  13. [13]
    J.R. David, D.P. Jatkar and A. Sen, Dyon Spectrum in N = 4 Supersymmetric Type II String Theories, JHEP 11 (2006) 073 [hep-th/0607155] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  14. [14]
    A. Sen, N=8 Dyon Partition Function and Walls of Marginal Stability, JHEP 07 (2008) 118 [arXiv:0803.1014] [INSPIRE].CrossRefADSGoogle Scholar
  15. [15]
    N. Banerjee, D.P. Jatkar and A. Sen, Asymptotic Expansion of the N = 4 Dyon Degeneracy, JHEP 05 (2009) 121 [arXiv:0810.3472] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  16. [16]
    I. Mandal and A. Sen, Black Hole Microstate Counting and its Macroscopic Counterpart, Nucl. Phys. Proc. Suppl. 216 (2011) 147 [arXiv:1008.3801] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  17. [17]
    R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) 3427 [gr-qc/9307038] [INSPIRE].ADSMathSciNetGoogle Scholar
  18. [18]
    V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev. D 50 (1994) 846 [gr-qc/9403028] [INSPIRE].ADSMathSciNetGoogle Scholar
  19. [19]
    A. Sen, Entropy Function and AdS 2 /CFT 1 Correspondence, JHEP 11 (2008) 075 [arXiv:0805.0095] [INSPIRE].CrossRefADSGoogle Scholar
  20. [20]
    A. Sen, Quantum Entropy Function from AdS 2 /CFT 1 Correspondence, Int. J. Mod. Phys. A 24 (2009) 4225 [arXiv:0809.3304] [INSPIRE].CrossRefADSGoogle Scholar
  21. [21]
    S. Banerjee, R.K. Gupta and A. Sen, Logarithmic Corrections to Extremal Black Hole Entropy from Quantum Entropy Function, JHEP 03 (2011) 147 [arXiv:1005.3044] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  22. [22]
    S. Banerjee, R.K. Gupta, I. Mandal and A. Sen, Logarithmic Corrections to N = 4 and N = 8 Black Hole Entropy: A One Loop Test of Quantum Gravity, JHEP 11 (2011) 143 [arXiv:1106.0080] [INSPIRE].CrossRefADSGoogle Scholar
  23. [23]
    R.K. Gupta, S. Lal and S. Thakur, Heat Kernels on the AdS 2 cone and Logarithmic Corrections to Extremal Black Hole Entropy, JHEP 03 (2014) 043 [arXiv:1311.6286] [INSPIRE].CrossRefADSGoogle Scholar
  24. [24]
    R.K. Gupta, S. Lal and S. Thakur, Logarithmic corrections to extremal black hole entropy in \( \mathcal{N}=2 \) , 4 and 8 supergravity, JHEP 11 (2014) 072 [arXiv:1402.2441] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  25. [25]
    A. Sen, Logarithmic Corrections to Rotating Extremal Black Hole Entropy in Four and Five Dimensions, Gen. Rel. Grav. 44 (2012) 1947 [arXiv:1109.3706] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  26. [26]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  27. [27]
    A. Kapustin, B. Willett and I. Yaakov, Exact Results for Wilson Loops in Superconformal Chern-Simons Theories with Matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  28. [28]
    N. Hama, K. Hosomichi and S. Lee, Notes on SUSY Gauge Theories on Three-Sphere, JHEP 03 (2011) 127 [arXiv:1012.3512] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  29. [29]
    F. Benini and S. Cremonesi, Partition Functions of \( \mathcal{N}=\left(2,2\right) \) Gauge Theories on S 2 and Vortices, Commun. Math. Phys. 334 (2015) 1483 [arXiv:1206.2356] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  30. [30]
    N. Doroud, J. Gomis, B. Le Floch and S. Lee, Exact Results in D = 2 Supersymmetric Gauge Theories, JHEP 05 (2013) 093 [arXiv:1206.2606] [INSPIRE].CrossRefADSGoogle Scholar
  31. [31]
    N. Hama and K. Hosomichi, Seiberg-Witten Theories on Ellipsoids, JHEP 09 (2012) 033 [arXiv:1206.6359] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  32. [32]
    A.S. Schwarz and O. Zaboronsky, Supersymmetry and localization, Commun. Math. Phys. 183 (1997) 463 [hep-th/9511112] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  33. [33]
    M. de Roo, J.W. van Holten, B. de Wit and A. Van Proeyen, Chiral Superfields in N = 2 Supergravity, Nucl. Phys. B 173 (1980) 175 [INSPIRE].CrossRefADSGoogle Scholar
  34. [34]
    B. de Wit, J.W. van Holten and A. Van Proeyen, Structure of N = 2 Supergravity, Nucl. Phys. B 184 (1981) 77 [Erratum ibid. B 222 (1983) 516] [INSPIRE].
  35. [35]
    B. de Wit, P.G. Lauwers and A. Van Proeyen, Lagrangians of N = 2 Supergravity - Matter Systems, Nucl. Phys. B 255 (1985) 569 [INSPIRE].CrossRefADSGoogle Scholar
  36. [36]
    A. Dabholkar, J. Gomes and S. Murthy, Quantum black holes, localization and the topological string, JHEP 06 (2011) 019 [arXiv:1012.0265] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  37. [37]
    A. Dabholkar, J. Gomes and S. Murthy, Localization & Exact Holography, JHEP 04 (2013) 062 [arXiv:1111.1161] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  38. [38]
    N. Banerjee, S. Banerjee, R.K. Gupta, I. Mandal and A. Sen, Supersymmetry, Localization and Quantum Entropy Function, JHEP 02 (2010) 091 [arXiv:0905.2686] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  39. [39]
    R.K. Gupta and S. Murthy, All solutions of the localization equations for N = 2 quantum black hole entropy, JHEP 02 (2013) 141 [arXiv:1208.6221] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  40. [40]
    J. Polchinski, Evaluation of the One Loop String Path Integral, Commun. Math. Phys. 104 (1986) 37 [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  41. [41]
    G.W. Moore and P.C. Nelson, Absence of Nonlocal Anomalies in the Polyakov String, Nucl. Phys. B 266 (1986) 58 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  42. [42]
    S. Murthy and V. Reys, Functional determinants, index theorems and exact quantum black hole entropy, arXiv:1504.01400 [INSPIRE].
  43. [43]
    H. Lü, C.N. Pope and J. Rahmfeld, A Construction of Killing spinors on S n, J. Math. Phys. 40 (1999) 4518 [hep-th/9805151] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  44. [44]
    R. Camporesi and A. Higuchi, Spectral functions and zeta functions in hyperbolic spaces, J. Math. Phys. 35 (1994) 4217 [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  45. [45]
    A. Sen, Logarithmic Corrections to N = 2 Black Hole Entropy: An Infrared Window into the Microstates, Gen. Rel. Grav. 44 (2012) 1207 [arXiv:1108.3842] [INSPIRE].CrossRefADSzbMATHGoogle Scholar
  46. [46]
    A. Van Proeyen, Tools for supersymmetry, Ann. U. Craiova Phys. 9 (1999) I.1 [hep-th/9910030] [INSPIRE].
  47. [47]
    T. Mohaupt, Black hole entropy, special geometry and strings, Fortsch. Phys. 49 (2001) 3 [hep-th/0007195] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  48. [48]
    M.F. Atiyah and R. Bott, A Lefschetz fixed point formula for elliptic complexes. I, Ann. Math. 86 (1967) 374.CrossRefMathSciNetzbMATHGoogle Scholar
  49. [49]
    M.F. Atiyah, Elliptic Operators and Compact Groups, Lecture Notes in Mathematics, Vol. 401, Springer-Verlag, Berlin (1974).Google Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.ICTPTriesteItaly
  2. 2.School of PhysicsKorea Institute for Advanced StudySeoulKorea

Personalised recommendations