Advertisement

Journal of High Energy Physics

, 2015:195 | Cite as

Hair-brane ideas on the horizon

  • Emil J. MartinecEmail author
  • Ben E. Niehoff
Open Access
Regular Article - Theoretical Physics

Abstract

We continue an examination of the microstate geometries program begun in arXiv:1409.6017, focussing on the role of branes that wrap the cycles which degenerate when a throat in the geometry deepens and a horizon forms. An associated quiver quantum mechanical model of minimally wrapped branes exhibits a non-negligible fraction of the gravitational entropy, which scales correctly as a function of the charges. The results suggest a picture of AdS3/CFT2 duality wherein the long string that accounts for BTZ black hole entropy in the CFT description, can also be seen to inhabit the horizon of BPS black holes on the gravity side.

Keywords

Black Holes in String Theory Long strings Gauge-gravity correspondence 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    F. Larsen and E.J. Martinec, U(1) charges and moduli in the D1-D5 system, JHEP 06 (1999) 019 [hep-th/9905064] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  2. [2]
    A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  3. [3]
    A. Strominger, Black hole entropy from near horizon microstates, JHEP 02 (1998) 009 [hep-th/9712251] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  4. [4]
    S.W. Hawking, Breakdown of Predictability in Gravitational Collapse, Phys. Rev. D 14 (1976) 2460 [INSPIRE].ADSMathSciNetGoogle Scholar
  5. [5]
    S.D. Mathur, The Fuzzball proposal for black holes: An Elementary review, Fortsch. Phys. 53 (2005) 793 [hep-th/0502050] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  6. [6]
    I. Bena and N.P. Warner, Resolving the Structure of Black Holes: Philosophizing with a Hammer, arXiv:1311.4538 [INSPIRE].
  7. [7]
    O. Lunin and S.D. Mathur, Metric of the multiply wound rotating string, Nucl. Phys. B 610 (2001) 49 [hep-th/0105136] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  8. [8]
    I. Bena, M. Shigemori and N.P. Warner, Black-Hole Entropy from Supergravity Superstrata States, JHEP 10 (2014) 140 [arXiv:1406.4506] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  9. [9]
    I. Bena, S. Giusto, R. Russo, M. Shigemori and N.P. Warner, Habemus Superstratum! A constructive proof of the existence of superstrata, JHEP 05 (2015) 110 [arXiv:1503.01463] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  10. [10]
    S. Giusto, E. Moscato and R. Russo, AdS3 Holography for 1/4 and 1/8 BPS geometries, [arXiv:1507.00945] [INSPIRE].
  11. [11]
    E.J. Martinec, The Cheshire Cap, JHEP 03 (2015) 112 [arXiv:1409.6017] [INSPIRE].CrossRefMathSciNetGoogle Scholar
  12. [12]
    I. Bena, J. de Boer, M. Shigemori and N.P. Warner, Double, Double Supertube Bubble, JHEP 10 (2011) 116 [arXiv:1107.2650] [INSPIRE].CrossRefADSGoogle Scholar
  13. [13]
    A. Giveon, D. Kutasov and O. Pelc, Holography for noncritical superstrings, JHEP 10 (1999) 035 [hep-th/9907178] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  14. [14]
    A. Giveon and D. Kutasov, Little string theory in a double scaling limit, JHEP 10 (1999) 034 [hep-th/9909110] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  15. [15]
    A. Giveon and D. Kutasov, Comments on double scaled little string theory, JHEP 01 (2000) 023 [hep-th/9911039] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  16. [16]
    J.M. Maldacena, Statistical entropy of near extremal five-branes, Nucl. Phys. B 477 (1996) 168 [hep-th/9605016] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  17. [17]
    I. Bena, N. Bobev, C. Ruef and N.P. Warner, Supertubes in Bubbling Backgrounds: Born-Infeld Meets Supergravity, JHEP 07 (2009) 106 [arXiv:0812.2942] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  18. [18]
    I. Bena, N. Bobev, S. Giusto, C. Ruef and N.P. Warner, An Infinite-Dimensional Family of Black-Hole Microstate Geometries, JHEP 03 (2011) 022 [Erratum ibid. 1104 (2011) 059] [arXiv:1006.3497] [INSPIRE].
  19. [19]
    A. Giveon, J. Harvey, D. Kutasov and S. Lee, Three-Charge Black Holes and Quarter BPS States in Little String Theory, arXiv:1508.04437 [INSPIRE].
  20. [20]
    A. Strominger, Massless black holes and conifolds in string theory, Nucl. Phys. B 451 (1995) 96 [hep-th/9504090] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  21. [21]
    C.M. Hull and P.K. Townsend, Enhanced gauge symmetries in superstring theories, Nucl. Phys. B 451 (1995) 525 [hep-th/9505073] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  22. [22]
    F. Denef, Quantum quivers and Hall/hole halos, JHEP 10 (2002) 023 [hep-th/0206072] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  23. [23]
    F. Denef and G.W. Moore, Split states, entropy enigmas, holes and halos, JHEP 11 (2011) 129 [hep-th/0702146] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  24. [24]
    I. Bena, M. Berkooz, J. de Boer, S. El-Showk and D. Van den Bleeken, Scaling BPS Solutions and pure-Higgs States, JHEP 11 (2012) 171 [arXiv:1205.5023] [INSPIRE].CrossRefADSGoogle Scholar
  25. [25]
    D. Kutasov, Introduction to little string theory, in Proceedings of Superstrings and related matters Spring School, Trieste Italy (2001), pg. 165.Google Scholar
  26. [26]
    R. Dijkgraaf, E.P. Verlinde and H.L. Verlinde, BPS spectrum of the five-brane and black hole entropy, Nucl. Phys. B 486 (1997) 77 [hep-th/9603126] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  27. [27]
    C.G. Callan Jr., J.A. Harvey and A. Strominger, World sheet approach to heterotic instantons and solitons, Nucl. Phys. B 359 (1991) 611 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  28. [28]
    O. Lunin, S.D. Mathur and A. Saxena, What is the gravity dual of a chiral primary?, Nucl. Phys. B 655 (2003) 185 [hep-th/0211292] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  29. [29]
    D. Mateos and P.K. Townsend, Supertubes, Phys. Rev. Lett. 87 (2001) 011602 [hep-th/0103030] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  30. [30]
    R. Emparan, D. Mateos and P.K. Townsend, Supergravity supertubes, JHEP 07 (2001) 011 [hep-th/0106012] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  31. [31]
    A. Dabholkar, J.P. Gauntlett, J.A. Harvey and D. Waldram, Strings as solitons and black holes as strings, Nucl. Phys. B 474 (1996) 85 [hep-th/9511053] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  32. [32]
    C.G. Callan, J.M. Maldacena and A.W. Peet, Extremal black holes as fundamental strings, Nucl. Phys. B 475 (1996) 645 [hep-th/9510134] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  33. [33]
    O. Lunin, J.M. Maldacena and L. Maoz, Gravity solutions for the D1 − D5 system with angular momentum, hep-th/0212210 [INSPIRE].
  34. [34]
    I. Bena, C.-W. Wang and N.P. Warner, Mergers and typical black hole microstates, JHEP 11 (2006) 042 [hep-th/0608217] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  35. [35]
    I. Bena and N.P. Warner, Bubbling supertubes and foaming black holes, Phys. Rev. D 74 (2006) 066001 [hep-th/0505166] [INSPIRE].ADSMathSciNetGoogle Scholar
  36. [36]
    P. Berglund, E.G. Gimon and T.S. Levi, Supergravity microstates for BPS black holes and black rings, JHEP 06 (2006) 007 [hep-th/0505167] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  37. [37]
    I. Bena, S. Giusto, M. Shigemori and N.P. Warner, Supersymmetric Solutions in Six Dimensions: A Linear Structure, JHEP 03 (2012) 084 [arXiv:1110.2781] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  38. [38]
    I. Bena and N.P. Warner, Black holes, black rings and their microstates, Lect. Notes Phys. 755 (2008) 1 [hep-th/0701216] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  39. [39]
    T. Banks, TASI lectures on matrix theory, hep-th/9911068 [INSPIRE].
  40. [40]
    E.J. Weinberg and P. Yi, Magnetic Monopole Dynamics, Supersymmetry and Duality, Phys. Rept. 438 (2007) 65 [hep-th/0609055] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  41. [41]
    A. Sen, Equivalence of three wall-crossing formulae, Commun. Num. Theor. Phys. 6 (2012) 601 [arXiv:1112.2515] [INSPIRE].CrossRefzbMATHGoogle Scholar
  42. [42]
    J. Polchinski and P. Pouliot, Membrane scattering with M momentum transfer, Phys. Rev. D 56 (1997) 6601 [hep-th/9704029] [INSPIRE].ADSMathSciNetGoogle Scholar
  43. [43]
    I. Bena, C.-W. Wang and N.P. Warner, Plumbing the Abyss: Black ring microstates, JHEP 07 (2008) 019 [arXiv:0706.3786] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  44. [44]
    D. Gaiotto, A. Simons, A. Strominger and X. Yin, D0-branes in black hole attractors, hep-th/0412179 [INSPIRE].
  45. [45]
    F. Denef, D. Gaiotto, A. Strominger, D. Van den Bleeken and X. Yin, Black Hole Deconstruction, JHEP 03 (2012) 071 [hep-th/0703252] [INSPIRE].CrossRefADSGoogle Scholar
  46. [46]
    R. Gregory, J.A. Harvey and G.W. Moore, Unwinding strings and t duality of Kaluza-Klein and h monopoles, Adv. Theor. Math. Phys. 1 (1997) 283 [hep-th/9708086] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  47. [47]
    A. Sen, A Note on enhanced gauge symmetries in M and string theory, JHEP 09 (1997) 001 [hep-th/9707123] [INSPIRE].CrossRefADSGoogle Scholar
  48. [48]
    S. Gukov, M. Rangamani and E. Witten, Dibaryons, strings and branes in AdS orbifold models, JHEP 12 (1998) 025 [hep-th/9811048] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  49. [49]
    D.S. Freed, G.W. Moore and G. Segal, The Uncertainty of Fluxes, Commun. Math. Phys. 271 (2007) 247 [hep-th/0605198] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  50. [50]
    D.S. Freed, G.W. Moore and G. Segal, Heisenberg Groups and Noncommutative Fluxes, Annals Phys. 322 (2007) 236 [hep-th/0605200] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  51. [51]
    B.E. Niehoff and N.P. Warner, Doubly-Fluctuating BPS Solutions in Six Dimensions, JHEP 10 (2013) 137 [arXiv:1303.5449] [INSPIRE].CrossRefADSGoogle Scholar
  52. [52]
    S. Giusto, O. Lunin, S.D. Mathur and D. Turton, D1 − D5 − P microstates at the cap, JHEP 02 (2013) 050 [arXiv:1211.0306] [INSPIRE].CrossRefADSGoogle Scholar
  53. [53]
    D. Marolf, The dangers of extremes, Gen. Rel. Grav. 42 (2010) 2337 [arXiv:1005.2999] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  54. [54]
    D. Marolf and A. Ori, Outgoing gravitational shock-wave at the inner horizon: The late-time limit of black hole interiors, Phys. Rev. D 86 (2012) 124026 [arXiv:1109.5139] [INSPIRE].ADSGoogle Scholar
  55. [55]
    K. Murata, H.S. Reall and N. Tanahashi, What happens at the horizon(s) of an extreme black hole?, Class. Quant. Grav. 30 (2013) 235007 [arXiv:1307.6800] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  56. [56]
    A. Sen, Two Charge System Revisited: Small Black Holes or Horizonless Solutions?, JHEP 05 (2010) 097 [arXiv:0908.3402] [INSPIRE].CrossRefADSGoogle Scholar
  57. [57]
    N. Banerjee, I. Mandal and A. Sen, Black Hole Hair Removal, JHEP 07 (2009) 091 [arXiv:0901.0359] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  58. [58]
    B.E. Niehoff, O. Vasilakis and N.P. Warner, Multi-Superthreads and Supersheets, JHEP 04 (2013) 046 [arXiv:1203.1348] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  59. [59]
    B.D. Chowdhury and S.D. Mathur, Radiation from the non-extremal fuzzball, Class. Quant. Grav. 25 (2008) 135005 [arXiv:0711.4817] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  60. [60]
    B.D. Chowdhury and S.D. Mathur, Non-extremal fuzzballs and ergoregion emission, Class. Quant. Grav. 26 (2009) 035006 [arXiv:0810.2951] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  61. [61]
    B. Chakrabarty, D. Turton, and A. Virmani, Holographic description of non-supersymmetric orbifolded D1-D5-P solutions, arXiv:1508.01231 [INSPIRE].
  62. [62]
    I. Kanitscheider, K. Skenderis and M. Taylor, Holographic anatomy of fuzzballs, JHEP 04 (2007) 023 [hep-th/0611171] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  63. [63]
    A. Giveon, M. Porrati and E. Rabinovici, Target space duality in string theory, Phys. Rept. 244 (1994) 77 [hep-th/9401139] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  64. [64]
    K. Becker, M. Becker and J.H. Schwarz, String theory and M-theory: A modern introduction, Cambridge University Press, Cambridge U.K. (2006).CrossRefGoogle Scholar
  65. [65]
    C.V. Johnson, D-branes, Cambridge University Press, Cambridge U.K. (2006).Google Scholar
  66. [66]
    J. Simon, Brane Effective Actions, κ-symmetry and Applications, Living Rev. Rel. 15 (2012) 3 [arXiv:1110.2422] [INSPIRE].Google Scholar

Copyright information

© The Author(s) 2015

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Enrico Fermi Institute and Department of PhysicsUniversity of ChicagoChicagoU.S.A.
  2. 2.Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Centre for Mathematical SciencesCambridgeU.K.

Personalised recommendations