Advertisement

Journal of High Energy Physics

, 2015:179 | Cite as

Classification of shift-symmetric no-scale supergravities

  • David CiupkeEmail author
  • Lucila Zárate
Open Access
Regular Article - Theoretical Physics

Abstract

Models of 4D \( \mathcal{N}=1 \) supergravity coupled to chiral multiplets with vanishing or positive scalar potential have been denoted as no-scale. Of particular interest in the context of string theory are models which additionally possess a shift-symmetry. In this case there exists a dual description of chiral models in terms of real linear multiplets. We classify all ungauged shift-symmetric no-scale supergravities in both formulations and verify that they match upon dualization. Additionally, we comment on the realizations within effective supergravities descending from string compactifications.

Keywords

Supergravity Models Flux compactifications Supersymmetric Effective Theories 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    E. Cremmer, S. Ferrara, C. Kounnas and D.V. Nanopoulos, Naturally vanishing cosmological constant in N = 1 supergravity, Phys. Lett. B 133 (1983) 61 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  2. [2]
    R. Barbieri, E. Cremmer and S. Ferrara, Flat and positive potentials in N = 1 supergravity, Phys. Lett. B 163 (1985) 143 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  3. [3]
    J.R. Ellis, A.B. Lahanas, D.V. Nanopoulos and K. Tamvakis, No-scale supersymmetric Standard Model, Phys. Lett. B 134 (1984) 429 [INSPIRE].CrossRefADSGoogle Scholar
  4. [4]
    E. Witten, Dimensional reduction of superstring models, Phys. Lett. B 155 (1985) 151 [INSPIRE].CrossRefADSGoogle Scholar
  5. [5]
    G. Dall’Agata and F. Zwirner, New class of N = 1 no-scale supergravity models, Phys. Rev. Lett. 111 (2013) 251601 [arXiv:1308.5685] [INSPIRE].CrossRefADSGoogle Scholar
  6. [6]
    T.W. Chaundy, The differential calculus, Clarendon Press, Oxford U.K. (1935).Google Scholar
  7. [7]
    D.B. Fairlie and A.N. Leznov, General solutions of the Monge-Ampère equation in n-dimensional space, J. Geom. Phys. 16 (1995) 385 [hep-th/9403134] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  8. [8]
    J.-P. Derendinger, F. Quevedo and M. Quirós, The linear multiplet and quantum four-dimensional string effective actions, Nucl. Phys. B 428 (1994) 282 [hep-th/9402007] [INSPIRE].CrossRefADSGoogle Scholar
  9. [9]
    P. Binetruy, G. Girardi and R. Grimm, Supergravity couplings: a geometric formulation, Phys. Rept. 343 (2001) 255 [hep-th/0005225] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  10. [10]
    T.W. Grimm and J. Louis, The effective action of N = 1 Calabi-Yau orientifolds, Nucl. Phys. B 699 (2004) 387 [hep-th/0403067] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  11. [11]
    S. Ferrara, C. Kounnas and F. Zwirner, Mass formulae and natural hierarchy in string effective supergravities, Nucl. Phys. B 429 (1994) 589 [Erratum ibid. B 433 (1995) 255] [hep-th/9405188] [INSPIRE].
  12. [12]
    T.W. Grimm, The effective action of type-II Calabi-Yau orientifolds, Fortsch. Phys. 53 (2005) 1179 [hep-th/0507153] [INSPIRE].CrossRefADSMathSciNetzbMATHGoogle Scholar
  13. [13]
    D. Fairlie, Comments on Galileons, J. Phys. A 44 (2011) 305201 [arXiv:1102.1594] [INSPIRE].MathSciNetGoogle Scholar
  14. [14]
    S. Deser and J. Franklin, Symmetrically reduced Galileon equations and solutions, Phys. Rev. D 86 (2012) 047701 [arXiv:1206.3217] [INSPIRE].ADSGoogle Scholar
  15. [15]
    S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [INSPIRE].ADSMathSciNetGoogle Scholar
  16. [16]
    K. Becker, M. Becker, M. Haack and J. Louis, Supersymmetry breaking and α corrections to flux induced potentials, JHEP 06 (2002) 060 [hep-th/0204254] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  17. [17]
    L. Covi, M. Gomez-Reino, C. Gross, J. Louis, G.A. Palma and C.A. Scrucca, De Sitter vacua in no-scale supergravities and Calabi-Yau string models, JHEP 06 (2008) 057 [arXiv:0804.1073] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  18. [18]
    A. Strominger, Yukawa couplings in superstring compactification, Phys. Rev. Lett. 55 (1985) 2547 [INSPIRE].CrossRefADSGoogle Scholar
  19. [19]
    L.J. Dixon, V. Kaplunovsky and J. Louis, On effective field theories describing (2, 2) vacua of the heterotic string, Nucl. Phys. B 329 (1990) 27 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  20. [20]
    P. Candelas and X. de la Ossa, Moduli space of Calabi-Yau manifolds, Nucl. Phys. B 355 (1991) 455 [INSPIRE].CrossRefADSGoogle Scholar
  21. [21]
    M. Haack and J. Louis, M theory compactified on Calabi-Yau fourfolds with background flux, Phys. Lett. B 507 (2001) 296 [hep-th/0103068] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  22. [22]
    T.W. Grimm and J. Louis, The effective action of type IIA Calabi-Yau orientifolds, Nucl. Phys. B 718 (2005) 153 [hep-th/0412277] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  23. [23]
    S. Gurrieri, J. Louis, A. Micu and D. Waldram, Mirror symmetry in generalized Calabi-Yau compactifications, Nucl. Phys. B 654 (2003) 61 [hep-th/0211102] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  24. [24]
    M. Graña, J. Louis and D. Waldram, Hitchin functionals in N = 2 supergravity, JHEP 01 (2006) 008 [hep-th/0505264] [INSPIRE].CrossRefADSGoogle Scholar
  25. [25]
    I. Benmachiche and T.W. Grimm, Generalized N = 1 orientifold compactifications and the Hitchin functionals, Nucl. Phys. B 748 (2006) 200 [hep-th/0602241] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  26. [26]
    M. Graña, J. Louis and D. Waldram, SU(3) × SU(3) compactification and mirror duals of magnetic fluxes, JHEP 04 (2007) 101 [hep-th/0612237] [INSPIRE].CrossRefADSGoogle Scholar
  27. [27]
    I. Antoniadis, S. Ferrara, R. Minasian and K.S. Narain, R 4 couplings in M and type-II theories on Calabi-Yau spaces, Nucl. Phys. B 507 (1997) 571 [hep-th/9707013] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  28. [28]
    T.W. Grimm, J. Keitel, R. Savelli and M. Weissenbacher, From M-theory higher curvature terms to α corrections in F-theory, arXiv:1312.1376 [INSPIRE].
  29. [29]
    D. Ciupke, J. Louis and A. Westphal, Higher-derivative supergravity and moduli stabilization, JHEP 10 (2015) 094 [arXiv:1505.03092] [INSPIRE].CrossRefADSGoogle Scholar
  30. [30]
    S. Cecotti, S. Ferrara and L. Girardello, Flat potentials in higher derivative supergravity, Phys. Lett. B 187 (1987) 327 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Deutsches Elektronen-Synchrotron DESY, Theory GroupHamburgGermany
  2. 2.Fachbereich Physik der Universität HamburgHamburgGermany

Personalised recommendations